Skip to main content

Upwind Schemes for Scalar Advection-Dominated Problems in the Discrete Exterior Calculus

  • Chapter
  • First Online:
Transport Processes at Fluidic Interfaces

Abstract

We present the discrete exterior calculus (DEC) to solve discrete partial differential equations on discrete objects such as cell complexes. To cope with advection-dominated problems, we introduce a novel stabilization technique to the DEC. To this end, we use the fact that the DEC coincides in special situations with known discretization schemes such as finite volumes or finite differences. Thus, we can carry over well-established upwind stabilization methods introduced for these classical schemes to the DEC. This leads in particular to a stable discretization of the Lie-derivative. We present the numerical features of this new discretization technique and study its numerical properties for simple model problems and for advection-diffusion processes on simple surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    E.g. orthogonality of primal and dual edges.

  2. 2.

    In general this algorithm does not guarantee well-centered meshes.

  3. 3.

    Which is a weighted average of the finite differences scheme using adjacent vertices. This results on rectangular meshes indeed in the central difference scheme.

References

  1. Arnold, D., Falk, R., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Am. Math. Soc. 47(2), 281–354 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Auchmann, B., Kurz, S.: A geometrically defined discrete Hodge operator on simplicial cells. IEEE Trans. Magn. 42(4), 643 (2006)

    Article  Google Scholar 

  3. Aurenhammer, F.: Voronoi diagrams – a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)

    Article  Google Scholar 

  4. Baker, B.S., Grosse, E., Rafferty, C.S.: Nonobtuse triangulation of polygons. Discret. Comput. Geom. 3(2), 147–168 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bell, N., Hirani, A.N.: PyDEC: software and algorithms for discretization of exterior calculus. ACM Trans. Math. Softw. (TOMS) 39(1), (2012). doi:10.1145/2382585.2382588

    Google Scholar 

  6. Bey, J.: Finite–Volumen–und Mehrgitterverfahren für elliptische Randwertprobleme. Springer, New York (1998)

    Book  MATH  Google Scholar 

  7. Croce, R., Griebel, M., Schweitzer, M.A.: Numerical simulation of bubble and droplet-deformation by a level set approach with surface tension in three dimensions. Int. J. Numer. Methods Fluids 62(9), 963–993 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Desbrun, M., Hirani, A.N., Leok, M., Marsden, J.E.: Discrete exterior calculus. Preprint (2005). https://arxiv.org/abs/math/0508341v2

    Google Scholar 

  9. Edelsbrunner, H.: Shape reconstruction with Delaunay complex. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN’98: Theoretical Informatics: Third Latin American Symposium Campinas, Brazil, 20–24 Apr 1998 Proceedings, pp. 119–132. Springer, Berlin/Heidelberg (1998)

    Google Scholar 

  10. Edelsbrunner, H.: Geometry and Topology for Mesh Generation. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  11. Edelsbrunner, H.: Roots of Geometry and Topology. Springer International Publishing, Cham (2014)

    Book  MATH  Google Scholar 

  12. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society, Providence, RI (2010)

    MATH  Google Scholar 

  13. Griebel, M., Dornseifer, T., Neunhoeffer, T.: Numerical Simulation in Fluid Dynamics: A Practical Introduction. Mathematical Modeling and Simulation, vol. 3. SIAM, Philadelphia, PA (1997)

    Google Scholar 

  14. Heumann, H.: Eulerian and semi-Lagrangian methods for advection-diffusion of differential forms, Ph.D. thesis, Dissertation, Eidgenössische Technische Hochschule ETH Zürich, Nr. 19608 (2011)

    Google Scholar 

  15. Hirani, A.N.: Discrete exterior calculus, Ph.D. thesis, California Institute of Technology (2003). http://thesis.library.caltech.edu/1885/

  16. Hirani, A.N., Kalyanaraman, K., VanderZee, E.B.: Delaunay Hodge star. Comput. Aided Des. 45(2), 540–544 (2013)

    Article  MathSciNet  Google Scholar 

  17. Hirani, A.N., Nakshatrala, K.B., Chaudhry, J.H.: Numerical method for Darcy flow derived using discrete exterior calculus. Int. J. Comput. Methods Eng. Sci. Mech. 16(3), 151–169 (2015)

    Article  MathSciNet  Google Scholar 

  18. Knabner, P., Angermann, L.: Numerical Methods for Elliptic and Parabolic Partial Differential Equations. Texts in Applied Mathematics, vol. 44. Springer, New York (2003)

    Google Scholar 

  19. Laadhari, A., Saramito, P., Misbah, C.: Improving the mass conservation of the level set method in a finite element context. C.R. Math. 348(9), 535–540 (2010)

    Google Scholar 

  20. Mohamed, M.S., Hirani, A.N., Ravi, S.: Discrete exterior calculus discretization of incompressible Navier–Stokes equations over surface simplicial meshes. J. Comput. Phys. 312, 175–191 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mullen, P., McKenzie, A., Pavlov, D., Durant, L., Tong, Y., Kanso, E., Marsden, J.E., Desbrun, M.: Discrete Lie advection of differential forms. Found. Comput. Math. 11(2), 131–149 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nestler, M., Nitschke, I., Praetorius, S., Voigt, A.: Orientational order on surfaces – the coupling of topology, geometry and dynamics. ArXiv e-prints (2016). https://www.arxiv.org/pdf/1608.01343v1.pdf

  23. Nitschke, I., Reuther, S., Voigt, A.: Discrete exterior calculus (DEC) for the surface Navier-Stokes equation. ArXiv e-prints (2016). https://arxiv.org/abs/1611.04392

  24. VanderZee, E., Hirani, A.N., Guoy, D., Zharnitsky, V., Ramos, E.: Geometric and combinatorial properties of well-centered triangulations in three and higher dimensions. Comput. Geom. Theory Appl. 46(6), 700–724 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

M. Griebel and A. Schier thank the DFG for the financial support through the Priority Programme 1506: Transport Processes at Fluidic Interfaces (SPP 1506). The authors would also like to thank B. Zwicknagl for reading parts of the manuscript and for inspiring discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Griebel .

Editor information

Editors and Affiliations

Appendix: Derivation of the Discrete Contraction Formula

Appendix: Derivation of the Discrete Contraction Formula

In this section, we give a formal derivation of the formula for the discrete contraction. In contrast to [15, p. 93] we obtain slightly different normalization factors. For the definitions see [15].

Theorem 3

For piecewise constant differential forms, ω k+1 is the evaluation of \(\mathit{\text{i}}_{\boldsymbol{\sigma }^{1}}\) on a simplex σ k with the algebraic definition from the geometric definition using the extrusion of σ k equivalent to the evaluation of the discrete differential form on σ k+1.

Proof

We assume the differential form ω k+1 as piecewise constant on the k + 1-simplices which yields

$$\displaystyle{\left \langle \omega ^{k+1},\text{extr}_{\boldsymbol{\sigma }^{ 1}}(\sigma ^{k},t)\right \rangle = \frac{\left \vert \text{extr}_{\boldsymbol{\sigma }^{1}}(\sigma ^{k},t)\right \vert } {\left \vert \sigma ^{k+1}\right \vert } \left \langle \omega ^{k+1},\sigma ^{k+1}\right \rangle.}$$

Hence, we obtain

$$\displaystyle\begin{array}{rcl} \left \langle \text{i}_{v}\omega ^{k+1},\sigma ^{k}\right \rangle & &:= \left. \frac{\text{d}} {\text{dt}}\right \vert _{t=0}\left \langle \omega ^{k+1},\text{extr}(\sigma ^{k},v_{ t})\right \rangle {}\\ & & = \left. \frac{\text{d}} {\text{dt}}\right \vert _{t=0}\left (\left \vert \text{extr}_{\boldsymbol{\sigma }^{1}}(\sigma ^{k},t)\right \vert \right ) \frac{1} {\left \vert \sigma ^{k+1}\right \vert }\left \langle \omega ^{k+1},\sigma ^{k+1}\right \rangle. {}\\ \end{array}$$

This shows that we have to consider the map \(t\mapsto \left \vert \text{extr}_{\boldsymbol{\sigma }^{1}}(\sigma ^{k},t)\right \vert \).

Following [15, Chap. 8.3], we get

$$\displaystyle{\left \vert \text{extr}_{\boldsymbol{\sigma }^{1}}(\sigma ^{k},t)\right \vert = \left \vert \sigma ^{k+1}\right \vert \frac{\left \vert h(t)\right \vert } {\left \vert h(1)\right \vert },}$$

where σ k is the base side of a (k + 1)-simplex and h its height. Here, we use the geometric definition and define the extrusion \(\text{extr}_{\boldsymbol{\omega }^{1 }}(\sigma ^{k},t)\) of a face ω k as the (k + 1)-simplex spanned by the face and a vector \(\dot{\mathbf{x}}(t) =\boldsymbol{\sigma } ^{1}(1 - t),0 \leq t \leq 1\). We assume without loss of generality that the common vertex σ 0 of the face and the edge lies at the origin. Because we have \(\dot{\mathbf{x}}(0) = 0\), we get \(\mathbf{x}(t) = t -\frac{t^{2}} {2}\). The height is proportional to the edge \(\boldsymbol{\sigma }^{1} = \mathbf{x}(1)\), spanning the (k + 1)-simplex together with the k-simplex σ k. Thus, we have for 0 < t < 1

$$\displaystyle\begin{array}{rcl} \frac{h(t)} {h(1)} = \frac{\vert \mathbf{x}(t)\vert } {\vert \mathbf{x}(1)\vert } = \frac{\vert \boldsymbol{\sigma }^{1}(t -\frac{t^{2}} {2} )\vert } {\vert \boldsymbol{\sigma }^{1}\vert } = t -\frac{t^{2}} {2}.& &{}\end{array}$$
(6.34)

Hence, we obtain

$$\displaystyle{\left. \frac{\text{d}} {\text{dt}}\right \vert _{t=0}\left (\left \vert \text{extr}_{\boldsymbol{\sigma }^{1}}(\sigma ^{k},t)\right \vert \right ) = 1\left \vert \sigma ^{k+1}\right \vert.}$$

This yields the claim. □

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Griebel, M., Rieger, C., Schier, A. (2017). Upwind Schemes for Scalar Advection-Dominated Problems in the Discrete Exterior Calculus. In: Bothe, D., Reusken, A. (eds) Transport Processes at Fluidic Interfaces. Advances in Mathematical Fluid Mechanics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-56602-3_6

Download citation

Publish with us

Policies and ethics