Skip to main content

Time Discretization for Capillary Flow: Beyond Backward Euler

  • Chapter
  • First Online:
Transport Processes at Fluidic Interfaces

Abstract

Development and analysis of numerical methods for two-phase flow has mainly focussed on spatial aspects of the discretization so far. In turn, most of the methods available are of first order in time at most and only conditionally stable. For many applications, however, these shortcomings may constitute the computational bottleneck, since both disadvantages dictate very small time step sizes in order to arrive at a decent approximation of the underlying problem. In this article we therefore focus on the time discretization of capillary free surface flows with the following features: higher order in time convergence, unconditional stability and low dissipativity. Applying the method of lines we use stiff integrators from the class of Rosenbrock and W-methods. As an alternative, a space-time Galerkin method is presented. These methods are compared computationally for examples of one- and two-phase capillary flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aland, S., Boden, S., Hahn, A., Klingbeil, F., Weismann, M., Weller, S.: Quantitative comparison of Taylor flow simulations based on sharp-interface and diffuse-interface models. Int. J. Numer. Methods Fluids 73(4), 344–361 (2013). doi:10.1002/fld.3802

    Article  Google Scholar 

  2. Aland, S., Lehrenfeld, C., Marschall, H., Meyer, C., Weller, S.: Accuracy of two-phase flow simulations: the Taylor Flow benchmark. PAMM 13(1), 595–598 (2013). doi:10.1002/pamm.201310278

    Article  Google Scholar 

  3. Aziz, A., Monk, P.: Continuous finite elements in space and time for the heat equation. Math. Comput. 52(186), 255–274 (1989). doi:10.1090/S0025-5718-1989-0983310-2

    Article  MathSciNet  MATH  Google Scholar 

  4. Bänsch, E.: Simulation of instationary, incompressible flows. Acta Math. Univ. Comenian. 67(1), 101–114 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Bänsch, E.: Finite element discretization of the Navier-Stokes equations with a free capillary surface. Numer. Math. 88, 203–235 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bänsch, E., Weller, S.: Fully implicit time discretization for a free surface flow problem. PAMM 11(1), 619–620 (2011). doi:10.1002/pamm.201110299

    Article  Google Scholar 

  7. Bänsch, E., Weller, S.: A comparison of several time discretization methods for free surface flows. In: Handlovicova, A., Minarechova, Z., Sevcovic, D. (eds.) ALGORITMY 2012, 19th Conference on Scientific Computing, Vysoke Tatry – Podbanske, pp. 331–341 (2012). http://www.iam.fmph.uniba.sk/algoritmy2012/

    Google Scholar 

  8. Bänsch, E., Weller, S.: Linearly implicit time discretization for free surface problems. PAMM 12(1), 525–526 (2012). doi:10.1002/pamm.201210251

    Article  MATH  Google Scholar 

  9. Basting, S., Bänsch, E.: Preconditioners for the discontinuous Galerkin time-stepping method of arbitrary order. ESAIM: Math. Model. Numer. Anal. (2016). doi:10.1051/m2an/2016055

    Google Scholar 

  10. Basting, S., Weismann, M.: A hybrid level set-front tracking finite element approach for fluid-structure interaction and two-phase flow applications. J. Comput. Phys. 255(0), 228–244 (2013). doi:http://dx.doi.org/10.1016/j.jcp.2013.08.018

  11. Basting, S., Weller, S.: Efficient preconditioning of variational time discretization methods for parabolic partial differential equations. ESAIM: Math. Model. Numer. Anal. (2014). doi:10.1051/m2an/2014036

    MATH  Google Scholar 

  12. Bretherton, F.P.: The motion of long bubbles in tubes. J. Fluid Mech. 10, 166 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  13. Davies, R.M., Taylor, G.: The mechanics of large bubbles rising through extended liquids and through liquids in tubes. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 200(1062), 375–390 (1950)

    Article  Google Scholar 

  14. Deuflhard, P., Bornemann, F.: Numerische Mathematik II. De Gruyter, Berlin (2002)

    MATH  Google Scholar 

  15. Dziuk, G.: An algorithm for evolutionary surfaces. Num. Math. 58, 603–611 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Frank, R., Schneid, J., Ueberhuber, C.W.: Order results for implicit Runge-Kutta methods applied to stiff systems. SIAM J. Numer. Anal. 22(3), 515–534 (1985). http://www.jstor.org/stable/2157080

    Article  MathSciNet  MATH  Google Scholar 

  17. Ganesan, S., Tobiska, L.: An accurate finite element scheme with moving meshes for computing 3D-axisymmetric interface flows. Int. J. Numer. Methods Fluids 57(2), 119–138 (2008). doi:10.1002/fld.1624

    Article  MathSciNet  MATH  Google Scholar 

  18. Ganesan, S., Matthies, G., Tobiska, L.: On spurious velocities in incompressible flow problems with interfaces. Comput. Methods Appl. Mech. Eng. 196(7), 1193–1202 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Günther, A., Jhunjhunwala, M., Thalmann, M., Schmidt, M.A., Jensen, K.F.: Micromixing of miscible liquids in segmented gas-liquid flow. Langmuir 21(4), 1547–1555 (2005). doi:10.1021/la0482406

    Article  Google Scholar 

  20. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, 2nd revised edition. Springer, Berlin (1991)

    Google Scholar 

  21. Halpern, D., Gaver, P.: Boundary element analysis of the time-dependent motion of a semi-infinite bubble in a channel. J. Comput. Phys. 115(366), 366–375 (1994)

    Article  MATH  Google Scholar 

  22. Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier-Stokes problem. IV. Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353–384 (1990). doi:10.1137/0727022. http://dx.doi.org/10.1137/0727022

    MATH  Google Scholar 

  23. Hussain, S., Schieweck, F., Turek, S.: Higher order Galerkin time discretization for nonstationary incompressible flow. In: Numerical Mathematics and Advanced Applications 2011, pp. 509–517. Springer, Heidelberg (2013)

    Google Scholar 

  24. Hysing, S.: A new implicit surface tension implementation for interfacial flows. Int. J. Numer. Methods Fluids 51(6), 659–672 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hysing, S., Turek, S., Kuzmin, D., Parolini, N., Burman, E., Ganesan, S., Tobiska, L.: Quantitative benchmark computations of two-dimensional bubble dynamics. Int. J. Numer. Methods Fluids 60(11), 1259–1288 (2009). doi:10.1002/fld.1934

    Article  MathSciNet  MATH  Google Scholar 

  26. Kreutzer, M.T., Kapteijn, F., Moulijn, J.A., Heiszwolf, J.J.: Multiphase monolith reactors: chemical reaction engineering of segmented flow in microchannels. Chem. Eng. Sci. 60(22), 5895–5916 (2005). doi:10.1016/j.ces.2005.03.022

    Article  Google Scholar 

  27. Lang, J., Teleaga, I.: Higher-order linearly implicit one-step methods for three-dimensional incompressible Navier-Stokes equations. Stud. Univ. “Babeş-Bolyai” Math. LIII(1), 109–121 (2008)

    Google Scholar 

  28. Lang, J., Verwer, J.: ROS3P – an accurate third-order Rosenbrock solver designed for parabolic problems. Bit Numer. Math. 41(4), 731–738 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lubich, C., Ostermann, A.: Linearly implicit time discretization of non-linear parabolic equations. IMA J. Numer. Anal. 15(4), 555–583 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lubich, C., Ostermann, A.: Runge-Kutta time discretization of reaction-diffusion and Navier-Stokes equations: nonsmooth-data error estimates and applications to long-time behaviour. Appl. Numer. Math. 22(1–3), 279–292 (1996). doi:10.1016/S0168-9274(96)00038-4. http://dx.doi.org/10.1016/S0168-9274(96)00038-4. Special issue celebrating the centenary of Runge-Kutta methods

  31. Matthies, G.: Finite Element Methods for Free Boundary Value Problems with Capillary Surfaces. Shaker, Aachen (2002)

    Google Scholar 

  32. Muradoglu, M., Günther, A., Stone, H.A.: A computational study of axial dispersion in segmented gas-liquid flow. Phys. Fluids 19(7) (2007). doi:10.1063/1.2750295

    Google Scholar 

  33. Rang, J., Angermann, L.: New Rosenbrock W-methods of order 3 for partial differential algebraic equations of index 1. Bit Numer. Math. 45, 761–787 (2005). doi:10.1007/s10543-005-0035-y

    Article  MathSciNet  MATH  Google Scholar 

  34. Roy, S., Bauer, T., Al-Dahhan, M., Lehner, P., Turek, T.: Monoliths as multiphase reactors: a review. AIChE J. 50(11), 2918–2938 (2004). doi:10.1002/aic.10268

    Article  Google Scholar 

  35. Rumpf, M.: A variational approach to optimal meshes. Numer. Math. 72, 523–540 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sanz-Serna, J., Verwer, J., Hundsdorfer, W.: Convergence and order reduction of Runge-Kutta schemes applied to evolutionary problems in partial differential equations. Numer. Math. 50(4), 405–418 (1986). doi:10.1007/BF01396661

    Article  MathSciNet  MATH  Google Scholar 

  37. Schieweck, F., Matthies, G.: Higher order variational time discretizations for nonlinear systems of ordinary differential equations. Preprint 23/2011, Otto-von-Guericke-Universität Magdeburg (2011)

    Google Scholar 

  38. Sussman, M., Ohta, M.: A stable and efficient method for treating surface tension in incompressible two-phase flow. SIAM J. Sci. Comput. 31(4), 2447–2471 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer Lecture Notes in Mathematics, vol. 1054. Springer, Berlin (1984)

    Google Scholar 

  40. Verwer, J.: Convergence and order reduction of diagonally implicit Runge-Kutta schemes in the method of lines. Afdeling Numerieke Wiskunde: Band 8506 von Report NM, Centrum voor Wiskunde en Informatica Amsterdam (1985)

    Google Scholar 

  41. Weismann, M.: The hybrid level set – front tracking approach. Master Thesis. Department Mathematics, University of Erlangen (2012)

    MATH  Google Scholar 

  42. Weller, S.: Higher order time discretization for free surface flows. Diploma Thesis. Department Mathematics, University of Erlangen (2008)

    Google Scholar 

  43. Weller, S.: Higher order Galerkin methods in time for free surface flows. PAMM 14(1), 855–856 (2014). doi:10.1002/pamm.201410408

    Article  Google Scholar 

  44. Weller, S.: Time discretization for capillary problems (2015). https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/6589

    Google Scholar 

  45. Williams, J.L.: Monolith structures, materials, properties and uses. ChemInform 33(11) (2002). doi:10.1002/chin.200211225

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eberhard Bänsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Weller, S., Bänsch, E. (2017). Time Discretization for Capillary Flow: Beyond Backward Euler. In: Bothe, D., Reusken, A. (eds) Transport Processes at Fluidic Interfaces. Advances in Mathematical Fluid Mechanics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-56602-3_5

Download citation

Publish with us

Policies and ethics