Skip to main content

Intelligent Wear Identification Based on Sensory Inline Information for a Stamping Process

  • Conference paper
  • First Online:
Proceedings of 5th International Conference on Advanced Manufacturing Engineering and Technologies (NEWTECH 2017)

Abstract

In recent years, the use of integrated sensors in stamping tools has strongly increased. Due to this, the opportunity rises to expand monitoring systems from providing simple differentiations between sufficient and insufficient process conditions or the detection of tool failure towards a detailed process understanding based on characteristic parameters describing the current process condition. Therefore, it is necessary to correlate sensor signals with tool and process parameters. However, most of these correlations are not investigated for stamping processes. Due to this, an investigation of correlations is essential to increase the benefits of current process monitoring systems. The aim of this paper is to establish further gradations for the current process condition to increase process stability. Furthermore, process disturbances or tool failures can be detected and upcoming tool changes will be predictable. A first approach is to evaluate correlations between sensor information, like force measurements, and wear mechanisms. This paper presents an approach for the determination of characteristic wear parameters by using the information provided by integrated force sensors. Furthermore, the parameters are established and correlated with wear phenomena on the tool. For the correlation analysis of the measurement and the current state of wear, the active elements of the tool are removed and the surface is measured by a scanning electron microscope (SEM) and a confocal white light microscope to investigate the 3D-surface properties. The experimental investigations are executed with a single pilot shear cutting tool on a high speed stamping press.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Klocke F (2001) Prozessüberwachung, Editorial, wt Werkstattstechnik 91, Vol 5, 255–258

    Google Scholar 

  2. Bassiuny AM, Li X, Du R (2007) Fault diagnosis of stamping process based on empirical mode decomposition and learning vector quantization. J Machine Tools Manuf 47:2298–2306

    Article  Google Scholar 

  3. Zhang GC, Ge M, Tong H, Xu Y, Du R (2002) Bispectral analysis for on-line monitoring of stamping operation. Eng Appl Artif Intell 15:97–104

    Article  Google Scholar 

  4. Strache W (2000) Multisensorielle Überwachung des Stanzprozesses. Dissertation, Leibniz Universität Hannover

    Google Scholar 

  5. Farzin M, Javani HR, Mashayekhi M, Hambli R (2006) Analysis of blanking process using various damage criteria. J Mater Process Technol 177(1-3):287–290

    Article  Google Scholar 

  6. Groche P, Möller N, Hoffmann H, Suh J (2011) Influence of gliding speed and contact pressure on the wear of forming tools. Wear 271:2570–2578

    Article  Google Scholar 

  7. Falconnet E, Chambert J, Makich H, Monteil G (2015) Prediction of abrasive punch wear in copper alloy thin sheet blanking. Wear 338–339:144–154

    Article  Google Scholar 

  8. Seunghyeon C, Naksoo K (2016) Prediction of tool wear in the blanking process using updated geometry. Wear 352–353:160–170

    Google Scholar 

  9. Brecher C, Emonts M, Eckert M, Weinbach M (2014) Double sided irradiation for laser-assisted shearing of ultra high strength steels with process integrated hardening. Phys Procedia 56:1427–1435

    Article  Google Scholar 

  10. Ghiotti A, Bruschi S, Regazzo P (2014) Shear surface control in blanking by adaptronic systems. In: 11th international conference on technology of plasticity, Procedia Engineering, vol 81, pp 2512–2517

    Google Scholar 

  11. Tan Y, Hahn O, Du F (2005) Process monitoring method with window technique for clinch joining. ISIJ Int 45:723–729

    Article  Google Scholar 

  12. Khrebtov P (2011) Neuartiges Verfahren zur Online-Prozessüberwachung und —Fehlerklassifizierung beim Durchsetzfügeverbinden von Blechen. Dissertation, Technische Universität Clausthal

    Google Scholar 

  13. Roskam R (1999) In-Prozess-Überwachung von Pressen der Blechverarbeitung. Dissertation, Technische Universität Hannover

    Google Scholar 

  14. Lange K (1990) Umformtechnik, Handbuch für Industrie und Wissenschaft, Band 3: Blechbearbeitung. 2. Auflage, Springer, Berlin

    Google Scholar 

  15. Loibl D (2003) Standzeit und Teilequalität beim Lochen von Feinblechen mit keramischen Schneidstempeln, Dissertation, Technische Universität München

    Google Scholar 

  16. Seidenberg H (1965) Presseneinwirkung auf Werkzeugverschleiß und Grathöhe beim Schneiden von Feinblech im geschlossenen Schnitt. Dissertation, Technische Universität Hannover

    Google Scholar 

  17. Fugger B (1984) Untersuchung der Verschleißvorgänge beim Scherschneiden von Feinblech. Dissertation, Universität Hannover

    Google Scholar 

  18. Borchert P (1976) Einflüsse der Werkzeuggeometrie und der Maschine beim Schneiden von kaltgewalztem Elektroblech. Dissertation, Technische Universität Hannover

    Google Scholar 

  19. Übelacker D, Hohmann J, Groche P (2014) Force requirements in shear cutting of metal-polymer-metal composites. J Adv Mater Res 1018:137–144

    Article  Google Scholar 

  20. Liutkus A (2015) Scale-space peak picking. research report inria nancy-grand, France. (https://hal.inria.fr/hal-01103123) 300 spm, after 10,000 strokes

Download references

Acknowledgements

The results presented in this paper are based on the joint research project “RobIN 4.0”. The authors are grateful for the support of the German Federal Ministry of Education and Research (BMBF) within the framework concept “Research for Tomorrow’s Production” (funding number 02PJ2700) and managed by the Project Management Agency Karlsruhe (PTKA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Hohmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hohmann, J., Schatz, T., Groche, P. (2017). Intelligent Wear Identification Based on Sensory Inline Information for a Stamping Process. In: Majstorovic, V., Jakovljevic, Z. (eds) Proceedings of 5th International Conference on Advanced Manufacturing Engineering and Technologies. NEWTECH 2017. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-56430-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56430-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56429-6

  • Online ISBN: 978-3-319-56430-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics