Skip to main content

Nanostructured Silver Sulfide Ag2S

  • Chapter
  • First Online:
Nanostructured Lead, Cadmium, and Silver Sulfides

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 256))

Abstract

The well known silver sulfide Ag2S is one of the most requisite semiconducting sulfides [1, 2] along with lead, zinc, copper, and cadmium sulfides [3,4,5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tang, A., Wang, Yu., Ye, H., Zhou, C., Yang, C., Li, X., Peng, H., Zhang, F., Hou, Y., Teng, F.: Controllable synthesis of silver and silver sulfide nanocrystals via selective cleavage of chemical bonds. Nanotechnology 24(35), 355602–355612 (2013)

    Article  Google Scholar 

  2. Cui, C., Li, X., Liu, J., Hou, Y., Zhao, Y., Zhong, G.: Synthesis and functions of Ag2S nanostructures. Nanoscale Res. Lett. 10, 431–21 (2015)

    Article  Google Scholar 

  3. Sadovnikov, S.I., Gusev, A.I., Rempel, A.A.: Nanostructured lead sulfide: synthesis, structure, and properties. Russ. Chem. Rev. 85(7), 731–758 (2016)

    Article  Google Scholar 

  4. Shi, X., Zheng, S., Gao, W., Wei, W., Chem, M., Deng, F., Liu, X., Xiao, Q.: Excitation wavelength and intensity dependence of photo-spectral blue shift in single CdSe/ZnS quantum dots. J. Nanopart. Res. 16(12), 2741–2749 (2014)

    Article  Google Scholar 

  5. Kozhevnikova, N.S., Vorokh, A.S., Uritskaya, A.A.: Cadmium sulfide nanoparticles prepared by chemical bath deposition. Russ. Chem. Rev. 84(3), 225–250 (2015)

    Article  Google Scholar 

  6. Sharma, R.C., Chang, Y.A.: The Ag-S (silver-sulfur) system. Bull. Alloy Phase Diagrams. 7(3), 263–269 (1986)

    Article  Google Scholar 

  7. Sharma, R.C., Chang, Y.A.: Ag-S (Silver-Sulphur). In: Massalski, T.B., Okamoto, H., Kacprzak, L. (eds.) Binary Alloy Phase Diagrams, pp. 86–87. ASM International Publisher, Materials Park (1990)

    Google Scholar 

  8. Frueh, A.J.: The crystallography of silver sulfide, Ag2S. Ztschr. Kristallographie 110(1), 136–144 (1958)

    Article  Google Scholar 

  9. Reye, H., Schmalzried, H.: On the nonstoichiometry of α-Ag2S. Ztschr. Physik. Chemie. Neue Folge 128(1), 93–100 (1981)

    Article  Google Scholar 

  10. Junod, P.: Relations entre la structure crystalline et les propriétiés électroniques des combinaisond Ag2S, Ag2Se, Cu2Se. Phys. Acta 32(6–7), 567–600 (1959)

    Google Scholar 

  11. Junod, P., Hediger, H., Kilchör, B., Wullschleger, J.: Metal-non-metal transition in silver chalcogenides. Philos. Mag 36(4), 941–958 (1977)

    Article  Google Scholar 

  12. Akamatsu, K., Takei, Sh, Mizuhata, M., Kajinami, A., Deki, Sh, Takeoka, Sh, Fujii, M., Hayashi, Sh, Yamamoto, K.: Preparation and characterization of polymer thin films containing silver and silver sulfide nanoparticles. Thin Sol. Films 359(1), 55–60 (2000)

    Article  Google Scholar 

  13. Kashida, S., Watanabe, N., Hasegawa, T., Iida, H., Mori, M., Savrasov, S.: Electronic structure of Ag2S, band calculation and photoelectron spectroscopy. Sol. State Ionics 158, 167–175 (2003)

    Article  Google Scholar 

  14. Wagner, C.: Investigations on silver sulfide. J. Chem. Phys. 21(10), 1819–1827 (1953)

    Article  Google Scholar 

  15. Rau, H.: Defect equilibria in silver sulphide. J. Phys. Chem. Solids 35(11), 1553–1559 (1974)

    Article  Google Scholar 

  16. Bonnecaze, G., Lichanot, A., Gromb, S.: Proprietes electrogalvaniques et electroniques du sulfure d’argent β: Domaine d’existence. J. Phys. Chem. Solids 39(3), 299–310 (1978)

    Article  Google Scholar 

  17. Bonnecaze, G., Lichanot, A., Gromb, S.: Proprietes electroniques et electrogalvaniques du sulfure d’argent α: Domaine d’existence. J. Phys. Chem. Solids 39(8), 813–821 (1978)

    Article  Google Scholar 

  18. Ditman, A.V., Kulikova, I.N.: Investigation of dissociation of solid and melted silver sulfide by a dew–point method. Zh. Fizich. Khimii. 53(1), 260–261 (1979). (in Russian)

    Google Scholar 

  19. Mitteilung, K.: Zustandsdiagramm Ag-S im Bereich der Verbindung Ag2 ± δ. S. Ztschr. Physik. Chemie. Neue Folge. 119(2), 251–255 (1980)

    Article  Google Scholar 

  20. Van Doorselaer, M.K.: Solid state properties and photographic activiti of crystalline Ag2S and (Ag, Au)2S-specks at the surface of silver halide crystalls. J. Photographic Sci 35(2), 42–52 (1987)

    Article  Google Scholar 

  21. Ramsdell, L.S.: The crystallography of acanthite, Ag2S. Amer. Mineralogist 28(7–8), 401–425 (1943)

    Google Scholar 

  22. Sadanaga, R., Sueno, S.: X-ray study on the & α-β transition of Ag2S. Mineralog. J. Japan 5(2), 124–148 (1967)

    Article  Google Scholar 

  23. Rahlfs, P.: Über die kubischen Hochtemperaturmodifikationen der Sulfide, Selenide und Telluride des Silbers und des einwertigen Kupfers. Ztschr. Physik. Chemie. 31(3), 157–194 (1936)

    Google Scholar 

  24. Strock, L.W.: Kristallstructur des Hochtemperatur-Jodsilbers & α-AgJ. Ztschr. Physik. Chemie. 25(5/6), 411–459 (1934)

    Google Scholar 

  25. Strock, L.W.: Erganzung und Berichtigung zu: “Kristallstruktur des Hochtemperatur-Jodsilbers α-AgJ”. Ztschr. Physik. Chemie. 31(2), 132–136 (1936)

    Google Scholar 

  26. Cava, R.J., Reidinger, F., Wuensch, B.J.: Single-crystal neutron diffraction study of the fast-ion conductor β-Ag2S between 186 and 325°C. J. Solid State Chem. 31(1), 69–80 (1980)

    Article  Google Scholar 

  27. Blanton, T., Misture, S., Dontula, N., Zdzieszynski, S.: In situ high-temperature X-ray diffraction characterization of silver sulfide, Ag2S. Powder Diffr. 26(2), 110–118 (2011)

    Google Scholar 

  28. Frueh, A.J.: The use of zone theory in Problems of sulfide mineralogy. Part III: Polymorphism of Ag2Te and Ag2S. Am. Mineral. 46(5–6), 654–660 (1961)

    Google Scholar 

  29. Sadovnikov, S.I., Gusev, A.I., Rempel, A.A.: Artificial silver sulfide Ag2S: crystal structure and particle size in deposited powders. Superlat. Microstr 83, 35–47 (2015)

    Article  Google Scholar 

  30. Sadovnikov, S.I., Gusev, A.I., Rempel, A.A.: Nonstoichiometry of nanocrystalline monoclinic silver sulfide. Phys. Chem. Chem. Phys. 17(19), 12466–12471 (2015)

    Article  Google Scholar 

  31. Sadovnikov, S.I., Gusev, A.I., Rempel, A.A.: An in situ high-temperature scanning electron microscopy study of acanthite–argentite phase transformation in nanocrystalline silver sulfide powder. Phys. Chem. Chem. Phys. 17(32), 20495–20501 (2015)

    Article  Google Scholar 

  32. Sadovnikov, S.I., Gusev, A.I., Rempel, A.A.: Nanocrystalline silver sulfide Ag2S. Rev. Adv. Mater. Sci. 41(1), 7–19 (2015)

    Google Scholar 

  33. Sadovnikov, S.I., Gusev, A.I., Rempel, A.A.: Structure and stoichiometry of nanocrystalline silver sulfide. Dokl. Akad. Nauk. 464(5), 568–573 (2015). (in Russian). (Engl. Transl.: Dokl. Phys. Chem. 464(2), 238–243 (2015))

    Google Scholar 

  34. Sadovnikov, S.I., Chukin, A.V., Rempel, A.A., Gusev, A.I.: Polymorphic transformation in nanocrystalline silver sulfide. Fiz. Tverd. Tela. 58(1), 32–38 (2016). (in Russian) (Engl. Transl.: Phys. Solid State. 58(1), 30–36 (2016))

    Google Scholar 

  35. Sadovnikov, S.I., Gusev, A.I., Chukin, A.V.: Rempel, A.A: High-temperature X-ray diffraction and thermal expansion of nanocrystalline and coarse-crystalline acanthite α-Ag2S and argentite β-Ag2S. Phys. Chem. Chem. Phys. 18(6), 4617–4626 (2016)

    Article  Google Scholar 

  36. Aliev, F.F., Jafarov, M.B., Tairov, B.A., Pashaev, G.P., Saddinova, A.A., Kuliev, A.A.: Effect of a phase transition on the electron energy spectrum in Ag2S. Fiz. Tekhn. Poluprovodnikov. 42(10), 1165–1167 (2008). (in Russian) (Engl. Transl.: Semiconductors. 42(10), 1146–1148 (2008))

    Google Scholar 

  37. Ehrlich, S.H.: Spectroscopic studies of AgBr with quantum-size clusters of iodide, silver, and silver sulfides. J. Imaging Sci. Technol. 37(1), 73–91 (1993)

    Google Scholar 

  38. Rickert, H.: Elektrische Eigenschaften von festen Stoffen mit gemischter Elektronen- und Ionenleitung, z.B. Ag2S. In: Madelung, O. (ed.) Festkörperprobleme, vol. VI, pp. 85–105. Braunschweig: F. Vieweg (1967)

    Google Scholar 

  39. Lim, W.P., Zhang, Z., Low, H.Y., Chin, W.S.: Preparation of Ag2S nanocrystals of predictable shape and size. Angew. Chem. Int. Ed. 43(42), 5685–5689 (2004)

    Article  Google Scholar 

  40. Yang, J., Ying, J.Y.: Nanocomposites of Ag2S and noble metals. Angew. Chem. Int. Ed. 50(20), 4637–4643 (2011)

    Article  Google Scholar 

  41. Zhu, G.X., Xu, Z.: Controllable growth of semiconductor heterostructures mediated by bifunctional Ag2S nanocrystals as catalyst or source-host. J. Am. Chem. Soc. 133(1), 148–157 (2011)

    Article  Google Scholar 

  42. Kryukov, A.I., Stroyuk, A.L., Zin’chuk, N.N., Korzhak, A.V., Kuchmii, S.Y.: Optical and catalytic properties of Ag2S nanoparticles. J. Mol. Catal. A: Chem. 221(1–2), 209–221 (2004)

    Article  Google Scholar 

  43. Shen, S., Zhang, Y., Liu, Y., Peng, L., Chen, X., Wang, Q.: Manganese-doped Ag2S-ZnS heteronanostructures. Chem. Mater. 24(12), 2407–2413 (2012)

    Article  Google Scholar 

  44. Nasrallah, T.B., Dlala, H., Amlouk, M., Belgacem, S., Bernede, J.C.: Some physical investigations on Ag2S thin films prepared by sequential thermal evaporation. Synth. Met. 151(3), 225–230 (2005)

    Article  Google Scholar 

  45. Hsu, T-Y., Buhay, H., Murarka, N.P.: Characteristics and applications of Ag2S films in the milli-meter wavelength region. In: Tanton, G.A. (ed.) Millimeter Optic, pp. 38–45. SPIE Proc. 259 (1980)

    Google Scholar 

  46. Karashanova, D., Nihtianova, D., Starbova, K., Starbov, N.: Crystalline structure and phase composition of epitaxially grown Ag2S thin films. Sol. State Ionics 171(3–4), 269–275 (2004)

    Article  Google Scholar 

  47. Liu, L., Hu, S., Dou, Y.-P., Liu, T., Lin, J., Wang, Y.: Nonlinear optical properties of near-infrared region Ag2S quantum dots pumped by nanosecond laser pulses. Beilst. J. Nanotechnol 6, 1781–1787 (2015)

    Article  Google Scholar 

  48. Liang, C.H., Terabe, K., Hasegawa, T.: Aono, M: Resistance switching of an individual Ag2S/Ag nanowire heterostructure. Nanotechnology. 18(48), 5 (2007). Paper 485202

    Article  Google Scholar 

  49. Xu, Z., Bando, Y., Wang, W., Bai, X., Golberg, D.: Real-time in situ HRTEM-resolved resistance switching of Ag2S Nanoscale ionic conductor. ACS Nano 4(5), 2515–2522 (2010)

    Article  Google Scholar 

  50. Belov, A.N., Pyatilova, O.V., Vorobiev, M.I.: Synthesis of Ag/Ag2S nanoclusters resistive switches for memory cells. Advanc. Nanoparticles 3, 1–4 (2014)

    Article  Google Scholar 

  51. El-Nahass, M.M., Farag, A.A.M., Ibrahim, E.M., Abd-El-Rahman, S.: Structural, optical and electrical properties of thermally evaporated Ag2S thin films. Vacuum 72(4), 453–460 (2004)

    Article  Google Scholar 

  52. Jadhav, U.M., Patel, S.N., Patil, R.S.: Synthesis of silver sulphide nanoparticles by modified chemical route for solar cell applications. Res. J. Chem. Sci. 3(7), 69–74 (2013)

    Google Scholar 

  53. Leidinger, P., Popescu, R., Gerthsen, D., Feldmann, C.: Nanoscale Ag2S hollow spheres and Ag2S nanodiscs assembled to three-dimensional nanoparticle superlattices. Chem. Mater. 25(21), 4173–4180 (2013)

    Article  Google Scholar 

  54. Xie, Y., Heo, S.H., Kim, Y.N., Yoo, S.H., Cho, S.O.: Synthesis and visible-light-induced catalytic activity of Ag2S-coupled TiO2 nanoparticles and nanowires. Nanotechnology. 21(1), 7 (2010). Paper 015703

    Article  Google Scholar 

  55. Zhu, L., Meng, Z., Trisha, G., Oh, W.-C.: Hydrothermal synthesis of porous Ag2S sensitized TiO2 catalysts and their photocatalytic activities in the visible light range. Chin. J. Catal. 33(2), 254–2604 (2012)

    Article  Google Scholar 

  56. Pourahmad, A.: Ag2S nanoparticle encapsulated in mesoporous material nanoparticles and its application for photocatalytic degradation of dye in aqueous solution. Superlatt. Mictostr. 52(2), 276–287 (2012)

    Article  Google Scholar 

  57. Pang, M.L., Hu, J.Y., Zeng, H.C.: Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers. J. Am. Chem. Soc. 132(31), 10771–10785 (2010)

    Article  Google Scholar 

  58. Xiong, S., Xi, B., Zhang, K., Chen, Y., Jiang, J., Hu, J., Zeng, H.C.: Ag nanoprisms with Ag2S attachment. Sci. Rep 3, 2177–2179 (2013)

    Article  Google Scholar 

  59. Jiang, P., Zhu, C.-N., Zhang, Z.-L., Tian, Z.-Q., Pang, D.-W.: Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo. Biomaterials 33(20), 5130–5135 (2012)

    Article  Google Scholar 

  60. Li, C., Zhang, Y., Wang, M., Zhang, Y., Chen, G., Li, L., Wu, D., Wang, Q.: In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 35(1), 393–400 (2014)

    Article  Google Scholar 

  61. Jang, J., Cho, K., Lee, S.H., Kim, S.: Synthesis and electrical characteristics of Ag2S nanocrystals. Mater. Lett. 62(8–9), 1438–1440 (2008)

    Article  Google Scholar 

  62. Han, L., Lv, Y., Asiri, A.M., Al-Youbi, A.O., Tu, B., Zhao, D.Y.: Novel preparation and near-infrared photoluminescence of uniform core-shell silver sulfide nanoparticle@mesoporous silica nanospheres. J. Mater. Chem. 22(15), 7274–7279 (2012)

    Article  Google Scholar 

  63. Sadovnikov, S.I., Rempel, A.A.: Synthesis of nanocrystalline silver sulfide. Neorgan. Materialy. 51(8), 829–837 (2015). (in Russian) (Engl. Transl.: Inorg. Mater. 51(8), 759–766 (2015))

    Google Scholar 

  64. Sadovnikov, S.I., Gusev, A.I., Gerasimov, EYu., Rempel, A.A.: Facile synthesis of Ag2S nanoparticles functionalized by carbon-containing citrate shell. Chem. Phys. Lett. 642, 17–21 (2015)

    Article  Google Scholar 

  65. Chen, R., Nuhfer, N.T., Moussa, L., Morris, H.R., Whitmore, P.M.: Silver sulfide nanoparticle assembly obtained by reacting an assembled silver nanoparticle template with hydrogen sulfide gas. Nanotechnology 19(45), 11 (2008). Paper 455604

    Article  Google Scholar 

  66. Zhang, W., Zhang, L., Hui, Z., Zhang, X., Qian, Y.: Synthesis of nanocrystalline Ag2S in aqueous solution. Sol. State Ionics. 130(1–2), 111–114 (2000)

    Article  Google Scholar 

  67. Qian, X.F., Yin, J., Huang, J.C., Yang, Y.F., Guo, X.X., Zhu, Z.K.: Preparation and characterization of PVA/Ag2S nanocomposite. Mater. Chem. Phys. 68(1–3), 95–97 (2001)

    Article  Google Scholar 

  68. Qian, X.F., Yin, J., Feng, S., Liu, S.H., Zhu, Z.K.: Preparation and characterization of polyvinylpyrrolidone films containing silver sulfide nanoparticles. J. Mater. Chem. 11(10), 2504–2506 (2001)

    Article  Google Scholar 

  69. Xu, C., Zhang, Z., Ye, Q.: A novel facile method to metal sulfide (metal = Cd, Ag, Hg) nano-crystallite. Mater. Lett. 58(11), 1671–1676 (2004)

    Article  Google Scholar 

  70. Lu, X., Li, L., Zhang, W., Wang, C.: Preparation and characterization of Ag2S nanoparticles embedded in polymer fibre matrices by electrospinning. Nanotechnology. 16(10), 2233–2237 (2005)

    Article  Google Scholar 

  71. Prabhune, V.B., Shinde, N.S., Fulari, V.J.: Studies on electrodeposited silver sulphide thin films by double exposure holographic interferometry. Appl. Surf. Sci. 255(5), 1819–1823 (2008)

    Article  Google Scholar 

  72. Meherzi-Maghraoui, H., Dachraoui, M., Belgacem, S., Buhre, K.D., Kunst, R., Cowache, P., Lincot, D.: Structural, optical and transport properties of Ag2S films deposited chemically from aqueous solution. Thin Solid Films 288(1–2), 217–223 (1996)

    Article  Google Scholar 

  73. Li, X.H., Li, J.X., Li, G.D., Liu, D.P., Chen, J.S.: Controlled synthesis, growth mechanism, and properties of monodisperse CdS colloidal spheres. Chem. – Europ. J. 13(31), 8754–8761 (2007)

    Google Scholar 

  74. Dhumure, S.S., Lokhande, C.D.: Chemical deposition of Ag2S films from acidic bath. Mater. Chem. Phys. 28(1), 141–144 (1991)

    Article  Google Scholar 

  75. Lyu, L.-M., Huang, M.H.: Formation of Ag2S cages from polyhedral Ag2O nanocrystals and their electrochemical properties. Chem. Asian J. 8(8), 1847–1853 (2013)

    Article  Google Scholar 

  76. Lismont, M., Paez, C.A., Dreesen, L.: A one-step short-time synthesis of Ag@SiO2 core-shell nanoparticles. J. Colloid Interface Sci. 447, 40–49 (2015)

    Article  Google Scholar 

  77. Li, Z., Jia, L., Li, Y., He, T., Li, X.-M.: Ammonia-free preparation of Ag@SiO2 core/shell nanoparticles. Appl. Surf. Sci. 345, 122–126 (2015)

    Article  Google Scholar 

  78. Peng, X., Schlamp, M.C., Kadavanich, A.V., Alivisatos, A.P.: Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119(30), 7019–7029 (1997)

    Article  Google Scholar 

  79. Pinaud, F., King, D., Moore, H.P., Weiss, S.: Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J. Am. Chem. Soc. 126(19), 6115–6123 (2004)

    Article  Google Scholar 

  80. Hota, G., Jain, S., Khilara, K.C.: Synthesis of CdS-Ag2S core-shell/composite nanoparticles using AOT/n-heptane/water microemulsions. Colloids Surf. A: Physicoch. Eng. Asp. 232(2–3), 119–127 (2004)

    Article  Google Scholar 

  81. Demchenko, D.O., Robinson, R.D., Sadtler, B., Erdonmez, C.K., Alivisatos, A.P., Wang, L.-W.: Formation mechanism and properties of CdS-Ag2S nanorod superlattices. ACS Nano 2(4), 627–636 (2008)

    Article  Google Scholar 

  82. Emamdoust, A., Shayesteh, S.F., Marandi, M.: Synthesis and characterization of aqueous MPA-capped CdS-ZnS core-shell quantum dots. Pramana J. Phys. 80(4), 713–721 (2013)

    Article  Google Scholar 

  83. Gerion, D., Pinaud, F., Williams, S.C., Parak, W.J., Zanchet, D., Weiss, S., Alivisatos, A.P.: Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. 105(37), 8861–8871 (2001)

    Article  Google Scholar 

  84. Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K., Nie, S.: In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechn. 22(8), 969–976 (2004)

    Article  Google Scholar 

  85. Tipcompor, N., Thongtem, S., Thongtem, T.: Characterization of cubic AgSbS2 nanostructured flowers synthesized by microwave-assisted refluxing method. J. Nanomaterials (Hindawi) 2013, 6 (2013). Paper 970489

    Google Scholar 

  86. Xiang, J., Cao, H., Wu, Q., Zhang, S., Zhang, X., Watt, A.A.R.: L-cysteine-assisted synthesis and optical properties of Ag2S nanospheres. J. Phys. Chem. C 112(10), 3580–3584 (2008)

    Article  Google Scholar 

  87. Yu, Y., Zhang, K., Sun, S.: One-pot aqueous synthesis of near infrared emitting PbS quantum dots. Appl. Surf. Sci. 258, 7181–7187 (2012)

    Article  Google Scholar 

  88. Deng, D., Xia, J., Cao, J., Qu, L., Tian, J., Qian, Z., Gu, Y., Gu, Z.: Forming highly fluorescent near-infrared emitting PbS quantum dots in water using glutathione as surface-modifying molecule. J. Coll. Interf. Sci. 367(1), 234–240 (2012)

    Article  Google Scholar 

  89. Sadjadi, M.S., Khalilzadegan, A.: The effect of capping agents, EDTA and EG on the structure and morphology of CdS nanoparticles. J. Non-Oxide Glass. 7(4), 55–63 (2015)

    Google Scholar 

  90. Zeng, J., Zheng, Y., Rycenga, M., Tao, J., Li, Z.Y., Zhang, Q., Zhu, Y., Xia, Y.: Controlling the shapes of silver nanocrystals with different capping agents. J. Am. Chem. Soc. 132(25), 8552–8853 (2010)

    Article  Google Scholar 

  91. Gutierrez, L., Aubry, C., Cornejo, M., Croue, J.-P.: Citrate-coated silver nanoparticles interactions with effluent organic matter: Influence of capping agent and solution conditions. Langmuir 31(32), 8865–8872 (2015)

    Article  Google Scholar 

  92. D’Souza, S., Mashazi, P., Britton, J., Nyokong, T.: Effects of differently shaped silver nanoparticles on the photophysics of pyridylsulfanyl-substituted phthalocyanines. Polyhedron 99, 112–121 (2015)

    Article  Google Scholar 

  93. Philip, D.: Honey mediated green synthesis of gold nanoparticles. Spectrochim. Acta, Part A 73(4), 650–653 (2009)

    Article  Google Scholar 

  94. Philip, D.: Honey mediated green synthesis of silver nanoparticles. Spectrochim. Acta, Part A 75(3), 1078–1081 (2010)

    Article  Google Scholar 

  95. Shenya, D.S., Mathew, J., Philip, D.: Phytosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim. Acta, Part A 79(1), 254–262 (2011)

    Article  Google Scholar 

  96. Ganeshkumar, M., Sathishkumar, M., Ponrasu, T., Girija, Dinesh M., Suguna, L.: Spontaneous ultra fast synthesis of gold nanoparticles using Punica granatum for cancer targeted drug delivery. Colloids Surf. B: Biointerf. 2013(106), 208–216 (2013)

    Article  Google Scholar 

  97. Annamalai, A., Christina, V.L.P., Sudha, D., Kalpana, M., Lakshmi, P.T.V.: Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. leaf extract. Colloids Surf. B: Biointerf. 108, 60–65 (2013)

    Google Scholar 

  98. Mendoza-Reséndez, R., Gómez-Treviño, A., Barriga-Castro, E.D., Núñez, N.O., Luna, C.: Synthesis of antibacterial silver-based nanodisks and dendritic structures mediated by royal jelly. RSC Advances. 4(4), 1650–1658 (2014)

    Article  Google Scholar 

  99. Ayodhya, D., Veerabhadram, G.: Green synthesis, characterization, photocatalytic, fluorescence and antimicrobial activities of Cochlospermum gossypium capped Ag2S nanoparticles. J. Photochem. Photobiol. B: Biology. 157, 57–69 (2016)

    Article  Google Scholar 

  100. Yang, H.-Y., Zhao, Y.-W., Zhang, Z.-Y., Xiong, H.-M., Yu, S.-N.: One-pot synthesis of water-dispersible Ag2S quantum dots with bright fluorescent emission in the second near-infrared window. Nanotechnology. 24(5), 055706–055710 (2013)

    Article  Google Scholar 

  101. Esteves, A.C.C., Trindade, T.: Synthesis studies on II/VI semiconductor quantum dots. Curr. Opinion Solid State Mater. Sci. 6(4), 347–353 (2002)

    Article  Google Scholar 

  102. Tang, Q., Yoon, S.M., Yang, H.J., Lee, Y., Song, H.J., Byon, H.R., Choi, H.C.: Selective degradation of chemical bonds: From single source molecular precursors to metallic Ag and semiconducting Ag2S nanocrystals via instant thermal activation. Langmuir 22(6), 2802–2805 (2006)

    Article  Google Scholar 

  103. Wang, T.X., Xiao, H., Zhang, Y.C.: Simple solid state synthesis of Ag2S crystallites using a single source molecular precursor. Mater. Lett. 62(21–22), 3736–3738 (2008)

    Article  Google Scholar 

  104. Zhang, C.L., Zhang, S.M., Yu, L.G., Zhang, Z.J.: Size-controlled synthesis of monodisperse Ag2S nanoparticles by a solventless thermolytic method. Mater. Lett. 85, 77–80 (2012)

    Article  Google Scholar 

  105. Burda, C., Chen, X.B., Narayanan, R., Sayed, E.I.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105(4), 1025–1102 (2005)

    Article  Google Scholar 

  106. Zhao, Y., Zhang, D.W., Shi, W.F.: A gamma-ray irradiation reduction route to prepare rod-like Ag2S nanocrystallines at room temperature. Mater. Lett. 61(14–15), 3232–3234 (2007)

    Article  Google Scholar 

  107. Xu, C.G., Zhang, Z.C., Ye, Q.: A novel facile method to metal sulfide (metal = Cd, Ag, Hg) nanocrystallite. Mater. Lett. 58(11), 1671–1676 (2004)

    Article  Google Scholar 

  108. Chen, M.H., Gao, L.: Synthesis of leaf-like Ag2S nanosheets by hydrothermal method in water alcohol homogenous medium. Mater. Lett. 60(8), 1059–1062 (2006)

    Article  Google Scholar 

  109. Zhai, H.J., Wang, H.S.: Ag2S morphology controllable via simple template-free solution route. Mater. Res. Bull. 43(8–9), 2354–2360 (2008)

    Article  Google Scholar 

  110. Wang, X.B., Liu, W.M., Hao, J.C., Fu, X.G., Xu, B.S.: A simple large-scale synthesis of well-defined silver sulfide semiconductor nanoparticles with adjustable size. Chem. Lett. 34(12), 1664–1665 (2005)

    Article  Google Scholar 

  111. Dong, L.H., Chu, Y., Liu, Y.: Synthesis of faceted and cubic Ag2S nanocrystals in aqueous solution. J. Colloid. Interf. Sci. 317(2), 485–492 (2008)

    Article  Google Scholar 

  112. Fang, Y., Bai, C., Zhang, Y.: Preparation of metal sulfide-polymer composite microspheres with patterned surface structures. Chem. Commun. 7, 804–805 (2004)

    Article  Google Scholar 

  113. Sun, Y.Z., Zhou, B.B.: Single-crystalline Ag2S hollow nanohexagons and their assembly into ordered arrays. Mater. Lett. 64(12), 1347–1349 (2010)

    Article  Google Scholar 

  114. Zhuang, Z., Peng, Q., Wang, X., Li, Y.: Tetrahedral colloidal crystals of Ag2S nanocrystals. Angew. Chem. Int. Ed. 46(43), 8174–8177 (2007)

    Article  Google Scholar 

  115. Chaudhuri, R.G., Paria, S.: A novel method for the templated synthesis of Ag2S hollow nanospheres in aqueous surfactant media. J. Colloid. Interf. Sci. 369(1), 117–122 (2012)

    Article  Google Scholar 

  116. Liu, M.Y., Xu, Z.L., Li, B.N., Lin, C.M.: Synthesis of worm-like Ag2S nanocrystals in W/O reverse microemulsion. Mater. Lett. 65(3), 555–558 (2011)

    Article  Google Scholar 

  117. Lv, L.Y., Wang, H.: Ag2S nanorice: hydrothermal synthesis and characterization study. Mater. Lett. 121, 105–108 (2014)

    Article  Google Scholar 

  118. Yarema, M., Pichler, S., Sytnyk, M., Seyrkammer, R., Lechner, R.T., Fritz-Popovski, G., Jarzab, D., Szendrei, K., Resel, R., Korovyanko, O., Loi, M.A., Paris, O., Hesser, G., Heiss, W.: Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis. ACS Nano 5(5), 3758–3765 (2011)

    Article  Google Scholar 

  119. Du, Y., Xu, B., Fu, T., Cai, M., Li, F., Zhang, Y., Wang, Q.: Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J. Am. Chem. Soc. 132(5), 1470–1471 (2010)

    Article  Google Scholar 

  120. Cai, W., Shin, D.W., Chen, K., Gheysens, O., Cao, Q., Wang, S.X., Gambhir, S.S., Chen, X.: Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 6(4), 669–676 (2006)

    Article  Google Scholar 

  121. Chen, J., Zhang, T., Feng, L.L., Zhang, M., Zhang, X., Su, H., Cui, D.: Synthesis of ribonuclease-A conjugate Ag2S quantum dots clusters via biomimetic route. Mater. Lett. 96, 224–227 (2013)

    Article  Google Scholar 

  122. Siva, C., Iswarya, C.N., Baraneedharan, P., Sivakumar, M.: L-cysteine assisted formation of mesh like Ag2S and Ag3AuS2 nanocrystals through hydrogen bonds. Mater. Lett. 134, 56–59 (2014)

    Article  Google Scholar 

  123. Koneswaran, M., Narayanaswamy, R.: L-cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion. Sens. Actuator B: Chem. 139(1), 104–109 (2009)

    Article  Google Scholar 

  124. Hou, X.M., Zhang, X.L., Yang, W., Liu, Y.: Synthesis of SERS active Ag2S nanocrystals using oleylamine as solvent reducing agent and stabilizer. Mater. Res. Bull. 47(9), 2579–2583 (2012)

    Article  Google Scholar 

  125. Shakouri-Arani, M., Salavati-Niasari, M.: Structural and spectroscopic characterization of prepared Ag2S nanoparticles with a novel sulfuring agent. Spectrochim. Acta A: Mol Biomol Spectrosc. 133, 463–471 (2014)

    Article  Google Scholar 

  126. Yan, Zhang: Hong G., Zhang Y., Chen G., Li F., Dai H., Wang Q. Ag2S quantum dot: A bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 6(5), 3695–3702 (2012)

    Article  Google Scholar 

  127. Hocaoglu, I., Çizmeciyan, M.N., Erdem, R., Ozen, C., Kurt, A., Sennaroglu, A., Acar, H.Y.: Development of highly luminescent and cytocompatible near-IR-emitting aqueous Ag2S quantum dots. J. Mater. Chem. 22(29), 14674–14681 (2012)

    Article  Google Scholar 

  128. Wang, C., Zhang, X., Qian, X., Wang, W., Qian, Y.: Ultrafine powder of silver sulfide semiconductor prepared in alcohol solution. Mater. Res. Bull. 33(7), 1083–1086 (1998)

    Article  Google Scholar 

  129. Krylova, V., Samuolaitiene, L.: Investigation of optical and electrical properties of silver sulfide films deposited on polyamide substrates. Mat. Sci. (Lithuania) 19(1), 10–14 (2013)

    Google Scholar 

  130. Grocholl, L., Wang, J., Gillan, E.G.: Synthesis of sub-micron silver and silver sulfide particles via solvothermal silver azide decomposition. Mater. Res. Bull. 38(5), 213–220 (2003)

    Article  Google Scholar 

  131. Kim, B., Park, C.-S., Murayama, M., Hochella, M.F.: Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ. Sci. Technol. 44(19), 7509–7514 (2010)

    Article  Google Scholar 

  132. Martínez-Castañón, G.A., Sánchez-Loredo, M.G., Dorantes, H.J., Martínez-Mendoza, J.R., Ortega-Zarzosa, G.: Ruiz Facundo. Characterization of silver sulfide nanoparticles synthesized by a simple precipitation method. Mater. Lett. 59(4), 529–534 (2005)

    Article  Google Scholar 

  133. JCPDS Card No. 14-0072

    Google Scholar 

  134. JCPDS Card No. 65–2356

    Google Scholar 

  135. Trandafilović, L.V., Djoković, V., Bibić, N., Georges, M.K., Radhakrishnan, T.: Confined growth of Ag2S semiconductor nanocrystals in the presence of PDMAEMA-co-AA polyampholyte co-polymer. Mater. Lett. 64(9), 1123–1126 (2010)

    Article  Google Scholar 

  136. Buerger, M.J.: Elementary Crystallography, pp. 15–16. John Wiley @ Sons, New York (1956)

    Google Scholar 

  137. Vainshtein, B.K.: Modern Crystallography. Vol. 1. Fundamentals of Crystals. Symmetry, and Methods of Structural Crystallography. 2nd edn, pp. 480. Springer-Verlag, Berlin (1994)

    Google Scholar 

  138. Delaunay, B.: Sur la généralisation de la théorie des paralléloèdres. Bulletin de l’Académie des Sciences de l’URSS. Classe des sciences mathématiques et naturelles. 5, 641–646 (1933)

    Google Scholar 

  139. Delaunay, B.: Neue Darstellung der geometrischen Kristallographie. Erste Abhandlung. Ztschr. Kristallographie. 84(1), 109–149 (1933)

    Google Scholar 

  140. Delaunay, B.: Sur la sphère vide. A la mémoire de Georges Voronoï. Bulletin de l’Académie des Sciences de l’URSS. Classe des sciences mathématiques et naturelles. 6, 793–800 (1934)

    Google Scholar 

  141. Delaunay, B.N.: The geometry of positive quadratic forms. Uspekhi Mat. Nauk. 3, 16–62 (1937) Uspekhi Mat. Nauk. 4, 102–164 (1938) (in Russian)

    Google Scholar 

  142. Patterson, A.L., Lowe, W.E.: Remarks on the Delaunay reduction. Acta Crystallogr. 10(2), 111–116 (1957)

    Article  Google Scholar 

  143. X’Pert Plus Version 1.0. Program for Crystallography and Rietveld analysis Philips Analytical B. V. Koninklijke Philips Electronics N. V. (1999)

    Google Scholar 

  144. Hall, W.H., Williamson, G.K.: The diffraction pattern of cold worked metals: I. The nature of extinction. Proc. Phys. Soc. London. Sect.B. 64(11). Part 11 383B, 937–946 (1951)

    Google Scholar 

  145. Gusev, A.I., Rempel, A.A.: Nanocrysnalline Materials, p. 351. Cambridge Intern. Science Publ, Cambridge (2004)

    Google Scholar 

  146. Gusev, A.I., Kurlov, A.S.: Certification of nanocrystalline materials on the size of particles (grains). Metallofizika i Noveishie Tekhnologii. 30(5), 679–694 (2008) (in Russian)

    Google Scholar 

  147. Sadovnikov, S.I., Gusev, A.I.: Chemical deposition of nanocrystalline lead sulfide powders with controllable particle size. J. Alloys Comp. 586, 105–112 (2014)

    Article  Google Scholar 

  148. Perrott, C.M., Fletcher, N.H.: Heat capacity of silver sulfide. J. Chem. Phys. 50(6), 2344–2350 (1969)

    Article  Google Scholar 

  149. Thompson, W.T., Flengas, S.N.: Drop calorimetric measurements on some chlorides, sulfides, and binary melts. Can. J. Chem. 49(9), 1550–1563 (1971)

    Article  Google Scholar 

  150. Mills, K.C.: Thermodynamic Data for Inorganic Sulfides, Selenides, and Tellurides, p. 845. Butterworths, London (1974)

    Google Scholar 

  151. Okazaki, H., Takano, A.: The specific heat of Ag2S in & α-phase. Ztsch. Naturforsch. A. 40(10), 986–988 (1985)

    Google Scholar 

  152. Grønvold, F., Westrum, E.F.: Silver(I) sulfide: Ag2S Heat capacity from 5 to 1000 K, thermodynamic properties, and transitions. J. Chem. Therm. 18(4), 381–401 (1986)

    Article  Google Scholar 

  153. Match! Version 1.10. Phase Identification from Powder Diffraction © 2003–2010 Crystal Impact

    Google Scholar 

  154. https://summary.ccdc.cam.ac.uk/structure-summary?ccdc=1062400

  155. Gusev, A.I., Sadovnikov, S.I., Chukin, A.V., Rempel, A.A.: Thermal expansion of nanocrystalline and coarse-crystalline silver sulfide Ag2S. Fiz. Tverd. Tela. 58(2), 246–251 (2016). (in Russian). (Engl. Transl.: Phys. Solid State. 58(2), 251–257 (2016))

    Google Scholar 

  156. Honma, K., Iida, K.: Specific heat of superionic conductor Ag2S, Ag2Se and Ag2Te in α-phase. J. Phys. Soc. Japan. 56(5), 1828–1836 (1987)

    Article  Google Scholar 

  157. X’Pert HighScore Plus. Version 2.2e (2.2.5). 2009 PANalytical B. V. Almedo, the Netherlands

    Google Scholar 

  158. Sadovnikov, S.I., Kozhevnikova, N.S., Rempel, A.A., Magerl, A.: Thermal expansion of a lead sulfide nanofilm. Thin Solid Films 548, 230–234 (2013)

    Article  Google Scholar 

  159. Sadovnikov, S.I., Gusev, A.I.: Effect of particle size on the thermal expansion of nanostructured lead sulfide films. J. Alloys Comp. 610, 196–202 (2014)

    Article  Google Scholar 

  160. Sadovnikov, S.I., Gusev, A.I.: Thermal expansion of nanostructured PbS films and anharmonicity of atomic vibrations. Fiz. Tverd. Tela. 56(11), 2274–2278 (2014). (in Russian). (Engl. Transl.: Phys. Sol. State. 56(11), 2353–2358 (2014))

    Google Scholar 

  161. Montrol, E.W.: Size effect in low temperature heat capacities. J. Chem. Phys. 18(2), 183–185 (1950)

    Article  Google Scholar 

  162. Gmelin’s Handbuch der anorganischen Chemie. 5th edn. In: Silber. Verlag Chemie GmbH, Weinheim, Teil B3 (1973)

    Google Scholar 

  163. Sadovnikov, S.I., Gusev, A.I.: Universal approach to the synthesis of silver sulfide in the forms of nanopowders, quantum dots, core-shell nanoparticles, and heteronanostructures. Eur. J. Inorg. Chem. 2016(31), 4944–4957 (2016)

    Article  Google Scholar 

  164. Sadovnikov, S.I., Kuznetsova, YuV, Rempel, A.A.: Ag2S silver sulfide nanoparticles and colloidal solutions: Synthesis and properties. Nanostr. Nano-Obj. 7, 81–91 (2016)

    Article  Google Scholar 

  165. Sadovnikov, S.I., Gusev, A.I.: Facile synthesis, structure, and properties of Ag2S/Ag heteronanostructure. J. Nanopart. Res. 18(9), 277–12 (2016)

    Article  Google Scholar 

  166. Gusev, A.I., Sadovnikov, S.I.: Acanthite-argentite transformation in nanocrystalline silver sulfide and the Ag2S/Ag nanoheterostructure. Fiz. Tekhn. Poluprovodnikov. 50(5), 694–699 (2016). (in Russian). (Engl. Transl.: Semiconductors. 50(5), 682–687 (2016))

    Google Scholar 

  167. Sadovnikov, S.I., Gusev, A.I., Gerasimov, E.Yu., Rempel, A.A.: Silver sulfide nanoparticles with a carbon-containing shell. Neorgan. Materialy. 52(5), 487–492 (2016). (in Russian). (Engl. Transl.: Inorg. Mater. 52(5), 441–446 (2016))

    Google Scholar 

  168. Gusev, A.I., Sadovnikov, S.I.: Structure and properties of nanoscale Ag2S/Ag heterostructures. Mater. Lett. 188, 351–354 (2017)

    Article  Google Scholar 

  169. Anastas, P., Eghbali, N.: Green chemistry: Principles and practice. Chem. Soc. Rev. 39(1), 301–312 (2010)

    Article  Google Scholar 

  170. Patnaik P.: Dean’s Analytical Chemistry Handbook. 2nd edn., p. 1280. McGraw-Hill, New York (2004) Table 4.2.

    Google Scholar 

  171. Lee, P.C., Meisel, D.: Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 86(17), 3391–3395 (1982)

    Article  Google Scholar 

  172. Gatan Misroscopy Suite. Gatan Inc Version 2.31.734.0

    Google Scholar 

  173. http://www.gatan.com

  174. Sadovnikov. S.I., Rempel. A.A.: Method of production of nanocrystalline powder of silver sulfide. Patent No. 2572421 of Russian Federation. 1–4 (2016)

    Google Scholar 

  175. Kayanuma, Y.: Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys. Rev. B. 38(14), 9797–9805 (1988)

    Article  Google Scholar 

  176. Chang, S., Li, Q., Xiao, X., Wong, K.Y., Chen, T.: Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorod. Energy Environm. Sci. 5(11), 9444–9448 (2012)

    Article  Google Scholar 

  177. Zhang, Y., Liu, Y., Li, C., Chen, X., Wang, Q.: Controlled synthesis of Ag2S quantum dots and experimental determination of the exciton Bohr radius. J. Phys. Chem. C 118(9), 4918–4923 (2014)

    Article  Google Scholar 

  178. Faraday, M.: The Bakerian lecture: Experimental relations of gold (and other metals) to light. Philosoph. Trans. Roy. Soc. (London) 147, 145–181 (1857)

    Article  Google Scholar 

  179. Sadovnikov, S.I., Kuznetsova, Yu.V., Gusev A.I., Rempel A.A.: Method of production of aqueous colloidal solutions of silver sulfide nanoparticles. Patent No. 2600761 of Russian Federation. 1–11 (2016)

    Google Scholar 

  180. Wang, H., Qi, L.: Controlled synthesis of Ag2S, Ag2Se, and Ag nanofibers by using a general sacrificial template and their application in electronic device fabrication. Adv. Func. Mater. 18(8), 1249–1256 (2008)

    Article  Google Scholar 

  181. Henglein, A.: Nanoclusters of semiconductors and metals: Colloidal nano-particles of semiconductors and metals: Electronic structure and processes. Ber. Bunsenges. Phys. Chem. 101(4), 1562–1572 (1997)

    Article  Google Scholar 

  182. Krutyakov, Y.A., Kudrinskiy, A.A., Olenin, A.Y., Lisichkin, G.V.: Synthesis and properties of silver nanoparticles: advances and prospects. Usp. Khim. 77(3), 242–269 (2008). (in Russian). (Engl. Transl.: Rus. Chem. Rev. 77(3), 233–257 (2008))

    Article  Google Scholar 

  183. Lukashin, A.V., Eliseev, A.A., Zhuravleva, N.G., Vertegel, A.A., Tretyakov, YuD, Lebedev, O.I., van Tendeloo, G.: One-step synthesis of shelled PbS nanoparticles in a layered double hydroxide matrix. Mend. Commun. 14(4), 174–176 (2004)

    Article  Google Scholar 

  184. Hayes, R., Ahmed, A., Edge, T., Zhang, H.: Core–shell particles: Preparation, fundamentals and applications in high performance liquid chromatography. J. Chromatogr. A 1357, 36–52 (2014)

    Article  Google Scholar 

  185. Sadovnikov, S.I., Gusev, A.I., Rempel, A.A.: Silver sulfide nanoparticles in ligand organic shell and method of its production. Patent No. 2603666 of Russian Federation. 1–13 (2016)

    Google Scholar 

  186. Faraday, M.: Experimental researches in electricity. Fourth series. Phil. Trans. Royal Soc. London. 123, 507–522 (1833) Art. 433–438

    Google Scholar 

  187. Faraday M.: Experimental researches in electricity. Twelfth series. Phil. Trans. Royal Soc. London. 128, 83–123 (1938) Art. 1340

    Google Scholar 

  188. Liu, B., Ma, Z.: Synthesis of Ag2S-Ag nanoprisms and their use as DNA hybridization probes. Small 7(11), 1587–1592 (2011)

    Article  Google Scholar 

  189. Wang D., Liu L., Kim Y., Huang Z., Pantel D., Hesse D., Alexe M.: Fabrication and characterization of extended arrays of Ag2S/Ag nanodot resistive switches. Appl. Phys. Lett. 98(24), 3 (2011) Paper 243109

    Google Scholar 

  190. Morales-Masis, M., Molen, S.J., Fu, W.T., Hesselberth, M.B., Ruitenbeek,J.M.: Conductance switching in Ag2S devices fabricated by in situ sulfurization. Nanotechnology 20(9), 6 (2009) Paper 095710

    Google Scholar 

  191. Tanaka, H., Akai, T., Tanaka, D., Ogawa, T.: Sequential phase transition during fabricating β-Ag2S film on Ag electrode by wet chemical process. e-J. Surf. Sci. Nanotechn. 12, 185–188 (2014)

    Google Scholar 

  192. Ma, X., Zhao, Y., Jiang, X., Liu, W., Liu, S., Tang, Z.: Facile preparation of Ag2S/Ag semiconductor/metal heteronanostructures with remarkable antibacterial properties. ChemPhysChem 13(10), 2531–2535 (2012)

    Article  Google Scholar 

  193. Horvath, B., Kawakita, J., Chikyow, T.: Diffusion barrier and adhesion properties of SiO x N y and SiO x layers between Ag/polypyrrole composites and Si substrates. ACS Appl. Mat. Interf. 6(12), 9201–9206 (2014)

    Article  Google Scholar 

  194. Sadovnikov, S.I., Gusev, A.I.: Structure and properties of Ag2S/Ag semiconductor/metal heteronanostructure. Biointerf. Res. Appl. Chem. 6(6), 1797–1804 (2016)

    Google Scholar 

  195. Terabe, K., Hasegawa, T., Nakayama, T., Aono, M.: Quantized conductance atomic switch. Nature 433(7021), 47–50 (2005)

    Article  Google Scholar 

  196. Kharkats, YuI: Electric-field induced transition to superionic conductive state. Fiz Tverd Tela. 23(7), 2190–2192 (1981). (in Russian)

    Google Scholar 

  197. Gurevich, Y.Y., Kharkats, Y.I.: Features of the thermodynamics of superionic conductors. Usp. Fiz. Nauk. 136(4), 693–728 (1982). (in Russian). (Engl. Transl.: Sov. Phys. Uspekhi. 25(4), 257–276 (1982))

    Article  Google Scholar 

  198. Hu, M., Chen, J.Y., Li, Z.Y., Au, L., Hartland, G.V., Li, X.D., Marquez, M., Xia, Y.N.: Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35(11), 1084–1094 (2006)

    Article  Google Scholar 

  199. Song, S.P., Yu, Q., He, Y., Huang, Q., Fan, C.H., Chen, H.Y.: Functional nanoprobes for ultrasensitive detection of biomolecules. Chem. Soc. Rev. 39(11), 4234–4243 (2010)

    Article  Google Scholar 

  200. Yang, J., Liu, H.: Metal-Based Composite Nanomaterials, vol. 4, pp. 93–114. Springer, Cham (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav I. Sadovnikov .

Appendix

Appendix

See Tables 4.12, 4.13, 4.14, 4.15, 4.16 and 4.17.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Sadovnikov, S.I., Rempel, A.A., Gusev, A.I. (2018). Nanostructured Silver Sulfide Ag2S. In: Nanostructured Lead, Cadmium, and Silver Sulfides. Springer Series in Materials Science, vol 256. Springer, Cham. https://doi.org/10.1007/978-3-319-56387-9_4

Download citation

Publish with us

Policies and ethics