Skip to main content

Laminate Concepts & Mechanical Properties

  • Chapter
  • First Online:
Fatigue and Fracture of Fibre Metal Laminates

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 236))

Abstract

Inspired by the successful application of ARALL and GLARE on aeronautical structures, many researchers and scientists have pursued the development of FML concepts. The fact that the majority of these studies never reached maturity on structural applications may be explained by the observation that FML was mostly treated as a material concept. As a result, not enough consideration was given to the final structural applications. Nonetheless, many FML variants with their properties presented in the literature constitute valuable information for future developments. Therefore, an overview of all the FMLs and the most characteristic properties are given in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vlot A (2001) GLARE—history of the development of a new aircraft material. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  2. Vogelesang LB (2003) Fibre metal laminates—the development f a new family of hybrid materials. In: Editor, G, (ed) Proceedings of the 22rd fatigue of aeronautical structures as an engineering challenge, ICAF symposium, vol I, EMAS publishing, UK, p 1–41

    Google Scholar 

  3. De Boer T (2001) Next generation fibre metal laminates. In: Vlot A, Gunnink JW (eds) Fibre Metal Laminates—an introduction. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  4. DIALFAST Development of innovative and advanced laminates for future aircraft structure. Project funded by the European Commission within the 6th framework programme, 2004–2007

    Google Scholar 

  5. Department of Defence (2005) Technology readiness assessment (TRA). Deskbook, USA

    Google Scholar 

  6. Marissen R (1988) Fatigue Crack Growth in ARALL, a hybrid Aluminium-Aramid composite material, crack growth mechanisms and quantitative predictions of the crack growth rate. PhD Dissertation, Delft University of Technology

    Google Scholar 

  7. Roebroeks GHJJ (1991) Towards GLARE—The Development of a fatigue insensitive and damage tolerant aircraft material. PhD Thesis, Delft University of Technology, Delft

    Google Scholar 

  8. Vlot A, Gunnink JW (eds) (2001) Fibre Metal Laminates—an introduction. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  9. Bucci RJ, Mueller LN, Vogelesang LB, Gunnink, JW (1988) Proceedings of the 33rd international sampe symposium. pp 1237–1248

    Google Scholar 

  10. Van Hengel C, Kortbeek P (2009) ARALL and GLARE FML’s: three decades of bridging the gap between theory and operational practice. In: M. Bos (ed) ICAF 2009, bridging the gap between theory and operational practice, pp 601–615

    Google Scholar 

  11. Da Silva DA, Botelho EC, Rezende MC (2008) Hygrothermal aging effect on fatigue behavior of GLARE. J. Reinf. Plast. & Comp 28(20):2487–2499

    Article  Google Scholar 

  12. Khan SU, Alderliesten RC, Benedictus R (2009) Delamination in Fibre Metal Laminates under variable amplitude loading. Composites Science and Technology 69(15–16):2604–2615

    Article  Google Scholar 

  13. Mangkoesoebroto RH (1987) The Effect of fibre volume fraction on the mechanical properties and the fatigue behaviour of ARALL laminates. Masters Thesis, Delft University of Technology

    Google Scholar 

  14. Structural Laminates Company (1994) QA Reports B0319B-2, B1008B-1, B0904A-3, 510 Constitution Blvd., New Kensington, PA 15064

    Google Scholar 

  15. Vermeeren CAJR (1990) The blunt notch behaviour of metal laminates: ARALL and GLARE. Report LR-617, Delft University of Technology

    Google Scholar 

  16. Wiltink FJ, Bodegom VJW van (1994) Flight-simulation fatigue tests on notched specimens of Fiber-metal laminates. Test results used in LRV-10, Report LRV-11, Delft University of Technology

    Google Scholar 

  17. Alderliesten RC (2009) On the development of hybrid material concepts for aircraft structures. Recent Patents on Engineering 3(1):25–38

    Article  Google Scholar 

  18. Boertien MFHC (1992) Evaluation of solid S2 and R glass fibers versus hollow S2 glass fibers for Fibre Metal Laminates. Preliminary thesis, Delft University of Technology

    Google Scholar 

  19. Roebroeks G (2000) The metal volume fraction approach. Report TD-R-00-003, Structural Laminates Industries

    Google Scholar 

  20. Pellenkoft FJ (2000) Initial sizing study of GLARE-based alternative floor panel concepts for the containerised cargo compartment of the A3XX. Report B2 V-00-44, Delft University of Technology

    Google Scholar 

  21. Mattousch AC (1991) Bearing strength tests on GLARE sheets for the application in lugs. Preliminary thesis, Delft University of Technology

    Google Scholar 

  22. Roebroeks GHJJ (2007) The development of Central. DTAS 2007

    Google Scholar 

  23. Vermeeren CAJR (1990) Ultra high modulus carbon fibres in ARALL Laminates. Memorandum M-641, Delft University of Technology

    Google Scholar 

  24. Vermeeren CAJR (1991) The application of carbon fibres in ARALL laminates. Report L-658, Delft University of Technology

    Google Scholar 

  25. Koos MG de (1990) PEEK carbon fibre reinforced titanium laminates. Master Thesis, Delft University of Technology

    Google Scholar 

  26. Kleinendorst RGJ (1990) Corrosion properties of carbon ARALL. Master Thesis, Delft University of Technology

    Google Scholar 

  27. Medenblik EW (1994) Titanium fibre-metal laminates. Master Thesis, Delft University of Technology

    Google Scholar 

  28. Lin CT, Kao PW, Yang FS (1991) Fatigue behaviour of carbon fibre reinforced aluminium laminates. Composites 22(2):135–141

    Article  Google Scholar 

  29. Lin CT, Kao PW, Jen M-HR (1994) Thermal residual strains in carbon–fibre aluminium laminates. Composites 25(4):303–307

    Article  Google Scholar 

  30. Lin CT, Kao PW (1995) Effect of fiber bridging on the fatigue crack propagation in carbon fiber-reinforced aluminium laminates. Mater Sci Eng A 190:65–73

    Article  Google Scholar 

  31. Lin CT, Kao PW (1996) Fatigue delamination growth in carbon fibre reinforced aluminium laminates. Compos Part A 27A:9–15

    Article  Google Scholar 

  32. Silva JMA, Ferreira JAM, Devezas TC (2003) Fatigue damage of carbon–epoxy laminates with embedded optical fibres. Mater Sci Technol 19:809–814

    Article  Google Scholar 

  33. Bradshaw RD, Gutierrez SE (2007) Characterization of fatigue crack initiation and growth in hybrid aluminium–graphite fibre composite laminates using image analysis. Fatigue Fract Eng Mater Struct 30:766–781

    Article  Google Scholar 

  34. Meyers LG, Roebroeks GHJJ (1986) De HP-PE vezel, enkele experimenten. Technische Hogeschool Delft, Luchtvaart en Ruimtevaarttechniek

    Google Scholar 

  35. TOYOBO Co. Ltd (2001) PBO Fiber Zylon®, technical information. (revised 2001.9)

    Google Scholar 

  36. Huang YK, Frings PH, Hennes E (2002) Mechanical properties of Zylon/epoxy composite. Compos B Eng 33(2):109–115

    Article  Google Scholar 

  37. Jagt OC van der (1998) Mechanical behaviour of a new polymer fibre (‘M5’) in advanced composite structures. In M.A. Erath (ed) Proceedings of the 19th international conference on SAMPE Europe progress through innovation and cost effectiveness, Paris, April 22–24, 1998. ISBN 3-9520477-5-9 pp 227–239

    Google Scholar 

  38. Jagt OC van der, Beukers A (1999) The potential of a new rigid-rod polymer fibre (‘M5’) in advanced composite structures. Polymer 40:1035–1044

    Article  Google Scholar 

  39. Sihombing KM (1999) The application of M5-fibre in fibre-metal laminates. Delft University of Technology, Netherlands

    Google Scholar 

  40. Asporo YAR (1999) Towards M5 FML, a preliminary research on the new Fiber Metal Laminate with M5 Fiber. MSc thesis, Delft University of Technology

    Google Scholar 

  41. Burianek DA (2001) Mechanics of fatigue damage in Titanium-Graphite hybrid Laminates. PhD dissertation, Massachusetts Institute of Technology

    Google Scholar 

  42. Burianek DA, Spearing SM (2002) Fatigue damage in titanium-graphite hybrid laminates. Compos Sci Technol 62:607–617

    Article  Google Scholar 

  43. Rans CD (2008) Evaluation of the fatigue crack propagation and delamination growth behaviour of Titanium-Carbon laminates. Report B2 V-08-06, Delft University of Technology

    Google Scholar 

  44. Rans CD, Alderliesten RC, Benedictus R (2011) Predicting the influence of temperature on fatigue crack propagation inn Fibre Metal Laminates. Eng Fract Mech 78:2193–2201

    Article  Google Scholar 

  45. Rensma E (2007) Investigation of innovative concepts for hybrid structures. MSc thesis, Delft University of Technology

    Google Scholar 

  46. Shahinian R (2006) The next generation of fibre metal laminates. A preliminary study of the material properties of carbon fibre-reinforced stainless steel laminates. Internship report, Hogeschool van Amsterdam

    Google Scholar 

  47. Rooijen RGJ (2006) Bearing strength characteristics of standard and steel reinforced GLARE. PhD dissertation, Delft University of Technology, Delft

    Google Scholar 

  48. Pärnänen T, Kanerva M, Sarlin E, Saarela O (2015) Debonding and impact damage in stainless steel fibre metal laminates prior to metal fracture. Compos Struct 119:777–786

    Article  Google Scholar 

  49. Cortes P, Cantwell WJ (2006) The fracture properties of a fibre–metal laminate based on magnesium alloy. Compos B 37:163–170

    Article  Google Scholar 

  50. Alderliesten R, Rans C, Benedictus R (2008) The applicability of magnesium based Fibre Metal Laminates in aerospace structures. Compos Sci Technol 68(14):2983–2993

    Article  Google Scholar 

  51. Coonen M (2010) Applicability of MgAl‐FML’s in aerospace. MSc thesis, Delft University of Technology

    Google Scholar 

  52. Van Velze TM (1988) Thermoplastics in ARALL laminates—Development, production and testing of ARALL laminates with a thermoplastic matrix. MSc thesis, Delft University of Technology

    Google Scholar 

  53. van der Hoeven W (2007) Preliminary evaluation of a high temperature Fibre Metal Laminate, Report NLR-CR-2007-596. National Aerospace Laboratory, The Netherlands

    Google Scholar 

  54. Langdon GS, Cantwell WJ, Nurick GN (2005) The blast response of novel thermoplastic-based fibre-metal laminates—some preliminary results and observations. Compos Sci Technol 65:861–872

    Article  Google Scholar 

  55. Langdon GS, Cantwell WJ, Nurick GN (2007) Localised blast loading of fibre–metal laminates with a polyamide matrix. Compos B 38:902–913

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Alderliesten, R. (2017). Laminate Concepts & Mechanical Properties. In: Fatigue and Fracture of Fibre Metal Laminates. Solid Mechanics and Its Applications, vol 236. Springer, Cham. https://doi.org/10.1007/978-3-319-56227-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56227-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56226-1

  • Online ISBN: 978-3-319-56227-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics