Skip to main content

Interaction of Hydrogen with a Graphene Plane of Carbon Nanotubes and Graphene

  • Chapter
  • First Online:
Doping of Carbon Nanotubes

Part of the book series: NanoScience and Technology ((NANO))

  • 572 Accesses

Abstract

Chapter 3 examines the reaction of hydrogen with CNTs . We have made an overview that describes the existing scientific literature experimental results and calculations on the interaction of hydrogen with CNTs. Review of the literature shows the prospect of using nanotubes as hydrogen storage, we continue this in the chapter, confirming the research via calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. T.K. Ghosh, M.A. Prelas, Energy Resources and Systems: Volume 2: Renewable Resources (Springer, Berlin, 2011), pp. 495—628

    Google Scholar 

  2. L.L. Vasiliev, L.E. Kanonchik, G. Kulakov, D.A. Mishkinis, Activated carbon and hydrogen adsorption storage. Hydrogen Mater. Sci. Chem. Carbon Nanomaterials, 633–651 (2007)

    Google Scholar 

  3. S.V. Bulyarskiy, Uglerodnye nanotrubky: techologya, upravlenie svoystvami, primenenie. Ulyanovsk, Streshen (2011), 479s. (Rus.)

    Google Scholar 

  4. V.A. Eletskiy, Sorption properties of carbon nanostructures. Adv. Phys. Sci. 174(11), 1191–1231 (2004)

    Google Scholar 

  5. A.C. Dillon, K.M. Jonse, T.A. Bekkedhai, C.H. Kiang, Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377–379 (1997)

    Google Scholar 

  6. K.K. Murata, K. Kaneko, Adsorption mechanism of supercritical hydrogen in internal and interstitial nanospaces of single-wall carbon nanohorn assembly. J. Phys. Chem. B. 106, 1132–1138 (2002)

    Google Scholar 

  7. V. Gayathri, R. Geetha, Hydrogen adsorption in defected carbon nanotubes. Adsorption 13, 53–60 (2007)

    Google Scholar 

  8. Y. Ye, C.C. Ahn, C. Witham, B. Fultz, J. Liu, A.G. Rinzler, D. Colbert, K.A. Smith, R.E. Smalley, Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett. 74, 2307—2309 (1999)

    Google Scholar 

  9. C. Liu, Y.Y. Fan, M. Liu, H.T. Conga, H.M. Cheng, M.S. Dresselhaus, Hydrogen in single-walled carbon nanotubes at room temperature. Science 286, 1127—1132 (1999)

    Google Scholar 

  10. K.K. Murata, K. Kaneko, Adsorption mechanism of supercritical hydrogen in internal and interstitial nanospaces of single-wall carbon nanohorn assembly. J. Phys. Chem. B. 106, 1132–1138 (2002)

    Google Scholar 

  11. Y. Ye, C.C. Ahn, C. Witham, B. Fultz, J. Liu, A.G. Rinzler, D. Colbert, K.A. Smith, R.E. Smalley, Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett. 74, 2307—2309 (1999)

    Google Scholar 

  12. A.G. Lipson, B.F. Lyakhov, E.I. Saunin, A.Y. Tsivadze, Hydrogen accumulation by single-walled carbon nanotubes encapsulated in the palladium matrix. Doklady Phys. Chem. 414(2), 143–146 (2007)

    Google Scholar 

  13. H. Zhu, A. Cao, X. Li et al., Hydrogen adsorption in bundles of well-aligned carbon nanotubes at room temperature. Appl. Surf. Sci. 178(1–4), 50–55 (2001)

    Article  ADS  Google Scholar 

  14. Y. Ye, C. Ahn, C. Witham et al., Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett. 74(16), 2307–2309 (1999)

    Article  ADS  Google Scholar 

  15. C. Liu, Y.Y. Fan, M. Liu et al., Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286(5442), 1127–1129 (1999)

    Article  Google Scholar 

  16. R.O. Loutfy, A. Moravsky, A. Franco et al., Physical hydrogen storage on nanotubes and nanocarbon materials, in Perspectives of Fullerene Nanotechnology ed. by E. Ōsawa (Springer, Berlin 2002) pp. 327—339

    Google Scholar 

  17. G.Q. Ning, F. Wei, G.H. Luo, Q.X. Wang, Y.L. Wu, H. Yu, Hydrogen storage in multi-wall carbon nanotubes using samples up to 85 g. Appl. Phys. A 78(7), 955–959 (2004)

    Article  ADS  Google Scholar 

  18. Dillon A. C., Gennett T., Alleman J. L., Jones K. M., Parilla P. A., Heben M. J., « Carbon Nanotube Materials for Hydrogen Storage »// Proceedings of the 2000 U.S. DOE Hydrogen Program Review, 9—11 May 2000, San Ramon, California. NREL/CP-570-28890. Golden, CO: National Renewable Energy Laboratory Vol. II: p. 421—440; NREL Report No. CP-570-32301

    Google Scholar 

  19. A.C. Dillon, T. Gennett, J.L. Alleman, K.M. Jones, P. Parilla, M.J. Heben, Carbon nanotube materials for hydrogen storage. Proceedings of the 1999 U.S. DOE Hydrogen Program Review, 4–6 May 1999, Lakewood, Colorado. NREL/CP-570-26938. Golden, CO: National Renewable Energy Laboratory Vol. II: pp. 422–438; NREL Report No. CP-570-32269

    Google Scholar 

  20. A.C. Dillon, K.E.H. Gilbert, J.L. Alleman, T. Gennett, K.M. Jones, P.A. Parilla, M.J. Heben, Carbon nanotube materials for hydrogen storage. Proceedings of the 2001 U.S. DOE Hydrogen Program Review, 17–19 April 2001, Baltimore, Maryland. NREL/CP-610-30535. Golden, CO: National Renewable Energy Laboratory pp. 478–494; NREL Report No. CP-610-32314

    Google Scholar 

  21. C. Nutzenadel, H. Zuttel, D. Chartouni, L. Schlaphach, Electrochemical storage of hydrogen in nanotube materials Electrochem. Solid State Lett. 2(1), 30–32 (1999)

    Google Scholar 

  22. N. Rajalakshmi, K.S. Dhathathreyan, A. Govindaraj, B.C. Satishkumar, Electrochemical investigation of single-walled carbon nanotubes for hydrogen storage. Electrochim. Acta 45(27), 4511–4525 (2000)

    Article  Google Scholar 

  23. M.C. Gordillo, J. Boronat, J. Casulleras, Isotopic effects of hydrogen adsorption in carbon nanotubes. Phys. Rev. B. 65(1), 014503 (2001)

    Article  ADS  Google Scholar 

  24. K.A. Williams, P.C. Eklund, Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes. Chem. Phys. Lett. 320(3–4), 352–358 (2000)

    Article  ADS  Google Scholar 

  25. S. Hammes-Schiffer, J.C. Tully, Proton transfer in solution: Molecular dynamics with quantum transitions. J. Chem. Phys. 101(6), 4657–4667 (1994)

    Article  ADS  Google Scholar 

  26. J.C. Tully, Molecular dynamics with electronic transitions. J. Chem. Phys. 93(2), 1061–1071 (1990)

    Article  ADS  Google Scholar 

  27. A.S. Fedorov, P.B. Sorokin, Density and thermodynamics of hydrogen adsorbed on the surface of single-walled carbon nanotubes. Solid State Phys. 48(2), 377–382 (2006)

    Google Scholar 

  28. H. Cheng, A.C. Cooper, G.P. Pez, M.K. Kostov et al., Molecular dynamics simulations of hydrogen adsorption in finite and infinite bundles of single walled carbon nanotubes. Mol. Mater. Specif. Interact. Model. Design. 4, 469–485 (2007)

    Google Scholar 

  29. R. Zidan, A.M. Rao, M. Au, Doped carbon nanotubes for hydrogen storage. Hydrogen, Fuel Cells, and Infrastructure Technologie, FY 2003 Progress Report (2003)

    Google Scholar 

  30. Z. Zhang, K. Cho, Ab initio study of hydrogen interaction with pure and nitrogen-doped carbon nanotubes. Phys. Rev. B. 75(7), 075420 (2007)

    Article  ADS  Google Scholar 

  31. Y. Fujimoto, S. Saito, Structure and stability of hydrogen atom adsorbed on nitrogen-doped carbon nanotubes. J. Phys: Conf. Ser. 302(1), 012006 (2011)

    Google Scholar 

  32. E. Rangel, G. Ruiz-Chavarria, L.F. Magana, J.S. Arellano, Hydrogen adsorption on N-decorated single wall carbon nanotubes. Phys. Lett. A. 373(30), 2588–2591 (2009)

    Article  ADS  Google Scholar 

  33. T. Yildirim, S. Ciraci, Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. Phys. Rev. Lett. 94(17), 175501 (2005)

    Article  ADS  Google Scholar 

  34. A. Sabir, W. Lu, C. Roland, J. Bernholc, Ab inito simulations of H2 in Li-doped carbon nanotube systems. J. Phys. Condens. Matter 19(8), 086226 (2007)

    Google Scholar 

  35. X. Wu, Y. Gao, X.C. Zeng, Hydrogen storage in pillared Li-dispersed boron carbide nanotubes. J. Phys. Chem. C 112(22), 8458–8463 (2008)

    Article  Google Scholar 

  36. A. Allouche, Y. Ferro, T. Angot, C. Thomas, J.-M. Layet, Hydrogen adsorption on graphite (0001) surface: a combined spectroscopy-density-functional-theory study. J. Chem. Phys. 123(12), 124701 (2005)

    Article  ADS  Google Scholar 

  37. P. Ruffieux, O. Gröning, M. Bielmann, P. Mauron, L. Schlapbach, P. Gröning, Hydrogen adsorption on sp2-bonded carbon: influence of the local curvature. Phys. Rev. B. 66(24), 245416 (2002)

    Article  ADS  Google Scholar 

  38. P. Ruffieux, O. Gröning, P. Schwaller, L. Schlapbach, P. Gröning, Hydrogen atoms cause long-range electronic effects on graphite. Phys. Rev. Lett. 84(21), 4910–4913 (2000)

    Article  ADS  Google Scholar 

  39. L. Hornekær, Z. Sljivancanin, W. Xu, R. Otero, E. Rauls et al., Metastable structures and recombination pathways for atomic hydrogen on the graphite (0001) surface. Phys. Rev. Lett. 96(15), 156104 (2006)

    Article  ADS  Google Scholar 

  40. L. Hornekær, E. Rauls, W. Xu, Z. Sljivancanin, R. Otero, I. Stensgaard et al., Clustering of chemisorbed H(D) atoms on the graphite (0001) surface due to preferential sticking. Phys. Rev. Lett. 97(18), 186102 (2006)

    Google Scholar 

  41. B.N. Khare, M. Meyyappan, A.M. Cassell et al., Functionalization of carbon nanotubes using atomic hydrogen from a glow discharge. Nano Lett. 2(1), 73–77 (2002)

    Article  ADS  Google Scholar 

  42. G. Chiarello, E. Maccallini, R.G. Agostino, T. Caruso, V. Formoso et al., Vibrational and electronic properties of hydrogen adsorbed on single-wall carbon nanotubes. Phys. Rev. B. 69(15), 153409 (2004)

    Article  ADS  Google Scholar 

  43. A. Nilsson, Nanoengineering of hybrid carbon nanotube-metal nanocluster composite materials for hydrogen storage. GCEP Technical Report (2006), http://gcep.stanford.edu/pdfs/QeJ5maLQQrugiSYMF3ATDA/2.1.4.4.nilsson_06.pdf

  44. O. Wessely, M.I. Katsnelson, A. Nilsson et al., Dynamical core-hole screening in the x-ray absorption spectra of hydrogenated carbon nanotubes and grapheme. Phys. Rev. B. 76(16), 161402 (2007)

    Article  ADS  Google Scholar 

  45. G. Zhang, P. Qi, X. Wang et al., Hydrogenation and hydrocarbonation and etching of single-walled carbon nanotubes. J. Am. Chem. Soc. 128(18), 6026–6027 (2006)

    Article  Google Scholar 

  46. S. Pekker, J.-P. Salvetat, E. Jakab et al., Hydrogenation of carbon nanotubes and graphite in liquid ammonia. J. Phys. Chem. B. 105(33), 7938–7943 (2001)

    Google Scholar 

  47. H. Takagi, H. Hatori, Y. Yamada, Desorption property of hydrogen chemisorbed on the surface of activated carbon. American Carbon Society. Carbon Conference Archive (2004), http://acs.omnibooksonline.com/data/papers/2004_L039.pdf

  48. A.C. Dillon, T. Gennett, J.L. Alleman et al., Optimization of single-wall nanotube synthesis for hydrogen storage. IEA Task 12: Metal Hydrides and Carbon for Hydrogen Storage. NREL/CH-590-31288, pp. 91—95 (2001)

    Google Scholar 

  49. Y. Ye, C. Ahn, C. Witham et al., Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett. 74, 2307 (1999)

    Article  ADS  Google Scholar 

  50. M. Yudasaka, Single-wall carbon nanotubes and single-wall carbon nanohorns. in Perspectives of Fullerene Nanotechnology, ed. by E. Osawa (Kluwer Akademic Publisher, USA, 2002), pp. 125–129; T. Yildirim, O. Gülseren, S. Ciraci, Exohydrogenated single-wall carbon nanotubes. Phys. Rev. B. 64(7), 075404 (2001)

    Google Scholar 

  51. A.A. Bogdanov, On the limits of physical adsorption of hydrogen in carbon materials. Tech. Phys. 75(9), 139 (2005)

    Google Scholar 

  52. S.D. Bondarenko, I.A. Alekseev, Study of isotopic effect for hydrogen and deuterium adsorption on nanoporous carbon. Hydrogen Mater. Sci. Chem. Carbon Nanomater. 3, 493–497 (2006)

    Google Scholar 

  53. M.C. Gordillo, J. Boronat, J. Casulleras, Isotopic effects of hydrogen adsorption in carbon nanotubes. arXiv:cond-mat/0109480v1 (cond-mat.stat-mech), 26 Sep 2001

  54. S.M. Lee, K.H. An, Y.H. Lee, G. Seifert, T. Frauenheim, A hydrogen storage mechanism in singlewalled carbon nanotubes. J. Am. Chem. Soc. 123(21), 5059–5063 (2001)

    Article  Google Scholar 

  55. Y. Ferro, F. Marinelli, A. Allouche, Density functional theory investigation of the diffusion and recombination of H on a graphite surface. Chem. Phys. Lett. 368(5–6), 609–615 (2003)

    Article  ADS  Google Scholar 

  56. A.S. Barnard, M.L. Terranova, M. Rossi, Density functional theory of H-induced defects as nucleation sites in hybrid carbon nanomaterials. Chem. Mater. 17(3), 527–535 (2005)

    Article  Google Scholar 

  57. G.U. Sumanesekera, C.K.W. Adu, S. Fang, P.C. Eklund, Effects of gas adsorption and collisions on electrical transport in single-walled carbon nanotubes. Phys. Rev. Lett. 85(5), 1096–1099 (2000)

    Article  ADS  Google Scholar 

  58. G. Buchs, A.V. Krasheninnikov, P. Ruffieux et al., Creation of paired electron states in the gap of semiconducting carbon nanotubes by correlated hydrogen adsorption. New J. Phys. 9(8), 275 (2007)

    Article  ADS  Google Scholar 

  59. W.L. Yim, T. Klüner. H2 carrying capacity by considering charging and discharging processes—Case Studies on Small Carbon—and Boron Nitride Nanotubes. High Performance Computing in Science and Engineering (Springer, Berlin, 2010), pp. 85–109

    Google Scholar 

  60. M.C. Gordillo, J. Boronat, J. Casulleras, Isotopic effects of hydrogen adsorption in carbon nanotubes. Phys. Rev. B. 65(1), 014503 (2001)

    Google Scholar 

  61. K.A. Williams, P.C. Eklund, Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes. Chem. Phys. Lett. 320, 352 (2000)

    Article  ADS  Google Scholar 

  62. S. Hammes-Schiffer, J.C. Tully, Proton transfer in solution: Molecular dynamics with quantum transitions. J. Chem. Phys. 101, 4657 (1994)

    Article  ADS  Google Scholar 

  63. J.C. Tully, Molecular dynamics with electronic transitions. J. Chem. Phys. 93, 1061 (1990)

    Article  ADS  Google Scholar 

  64. A.S. Fedorov, S.G. Ovchinikov, Density and thermodynamics of hydrogen adsorbed inside narrow CNTs. Phys. Solid State 46(3), 563 (2004)

    Google Scholar 

  65. M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107(13), 3902–3909 (1985)

    Article  Google Scholar 

  66. B.C. Wanga, H.W. Wanga, I.C. Lina et al., A semiempirical study of carbon nanotubes with finite tubular length and various tubular diameters. J. Chin. Chem. Soc. 50, 939—945 (2003)

    Google Scholar 

  67. D. Lu, Y. Li, S.V. Rotkin, U. Ravaioli, K. Schulten, Finite-size effect and wall polarization in a carbon nanotube channel. Nano Lett. 4(12), 2383–2387 (2004)

    Article  ADS  Google Scholar 

  68. A.C. Dillon, K.E.H. Gilbert, P.A. Parilla, C. Horbacewicz, J.L. Alleman, K.M. Jones, M.J. Heben, Hydrogen storage in carbon single-wall nanotubes. Hydrogen, Fuel Cells, and Infrastructure Technologies, FY 2003 Progress Report (2003)

    Google Scholar 

  69. P. Ruffieux, O. Groning, M. Bielmann, P. Groning, Hydrogen chemisorption on sp2-bonded carbon: Influence of the local curvature and local electronic effects. Appl. Phys. A 78(7), 975–980 (2004)

    Article  ADS  Google Scholar 

  70. E. Durgun, S. Dag, S. Ciraci, O. Gülseren, Energetics and electronic structures of individual atoms adsorbed on carbon nanotubes. J. Phys. Chem. B. 108(2), 575–582 (2004)

    Article  Google Scholar 

  71. O. Gulseren, T. Yildirim, S. Ciraci, Tunable adsorption on carbon nanotubes. Phys. Rev. Lett. 87(1), 116802 (2011)

    ADS  Google Scholar 

  72. A.N. Andriotis, M. Menon, D. Srivastava, G. Froudakis, Extreme hydrogen sensitivity of the transport properties of single-wall carbon-nanotube capsules. Phys. Rev. B. 64(19), 193401 (2001)

    Article  ADS  Google Scholar 

  73. H. Scudder, G. Lu, N. Kioussis, Hydrogen-induced unzipping of single-walled carbon nanotubes. Phys. Rev. B. 68(20), 205416 (2003)

    Article  ADS  Google Scholar 

  74. S. Letardi, M. Celino, F. Cleri, V. Rosato, Atomic hydrogen adsorption on a Stone-Wales defect in graphite. Surf. Sci. 496(1–2), 22–38 (2002)

    Google Scholar 

  75. C. Tabtimsai, S. Keawwangchai, N. Nunthaboot, V. Ruangpornvisuti, B. Wanno, Density functional investigation of hydrogen gas adsorption on Fedoped pristine and Stone–Wales defected single-walled carbon nanotubes. J. Mol. Model. 18(8), 3941–3949 (2012)

    Article  Google Scholar 

  76. O. Wessely, M.I. Katsnelson, A. Nilsson et al., Dynamical core-hole screening in the x-ray absorption spectra of hydrogenated carbon nanotubes and grapheme. Phys. Rev. B. 76(16), 161402 (2007)

    Article  ADS  Google Scholar 

  77. G. Zhang, P. Qi, X. Wang et al., Hydrogenation and hydrocarbonation and etching of single-walled carbon nanotubes. J. Am. Chem. Soc. 128(18), 6026–6027 (2006)

    Article  Google Scholar 

  78. S. Pekker, J.-P. Salvetat, E. Jakab et al., Hydrogenation of carbon nanotubes and graphite in liquid ammonia. J. Phys. Chem. B. 105(33), 7938–7943 (2001)

    Article  Google Scholar 

  79. R.E. Haufler, J. Conceicao, L.P.F. Chibante et al., Efficient production of C60 (buckminsterfullerene), C60H36, and the solvated buckide ion. J. Phys. Chem. 94(24), 8634–8636 (1990)

    Article  Google Scholar 

  80. G. Lu, H. Scudder, N. Kioussis, Hydrogen-induced unzipping of single-walled carbon nanotubes. Phys. Rev. B. 68(20), 205416 (2003)

    Article  ADS  Google Scholar 

  81. K.A. Park, S.J. Kim, K. Seo, Y.H. Lee, Adsorption of atomic hydrogen on single-walled carbon nanotubes. J. Phys. Chem. B. 109(18), 8967–8972 (2005)

    Article  Google Scholar 

  82. C.W. Bauschlicher Jr., Hydrogen and fluorine binding to the sidewalls of a (10, 0) carbon nanotube. Chem. Phys. Lett. 322(3–4), 237–241 (2000)

    Google Scholar 

  83. S. Jalili, R. Majidi, The effect of atomic hydrogen adsorption on single-walled carbon nanotubes properties. J. Iran. Chem. Soc. 4(4), 431–437 (2007)

    Article  Google Scholar 

  84. P. Nikolaev, A. Thess, A.G. Rinzler, D.T. Colbert, R. Smalley, Diameter doubling of single-wall nanotubes. Chem. Phys. Lett. 266(5–6), 422–426 (1997)

    Article  ADS  Google Scholar 

  85. Б. Tpeпнeл, « Xeмocopбция » . M.: Инocтpaннaя лит., 1958. 327 c

    Google Scholar 

  86. Y.S. Nechaev, O chemosorbtchii i phyzicheskoy sorbtcii vodoroda uglerodnymi nanostructurami. Alternativnaya energetica i ecologya. 2(22), 64–73 (2005)

    Google Scholar 

  87. O.B. Tomilin, U.U. Murumin, Adsorption on the graphene surface of carbon nanotubes and their energy spectrum. Phys. Solid State 48(3), 563–571 (2006)

    Article  Google Scholar 

  88. O.B. Tomilin, P.V. Avramov, A.A. Kuzovov, S.G. Ovchinikov, G.L.Pashkov, Connection the chemical properties of carbon nanotubes with their atomic and electronic structure. Phys. Solid State 46(6), 1143–1146 (2004)

    Google Scholar 

  89. A. Yu, Zarifayntc. J. Phys. Chem. 38, 2655–2664 (1964)

    Google Scholar 

  90. V.F. Кisilev, O.V. Кrylov, Adsorption processes on the surface of semiconductors and dielectrics. Moscov. Sience, 255 (1978) (Rus.)

    Google Scholar 

  91. A.P. Popov, Bazhin influence of impurities and defects on electronic structure of carbon nanotubes. Hydrogen Mater. Sci. Chem. Carbon Nanomater., 795–799 (2007)

    Google Scholar 

  92. Y.S. Nechaev, O chemosorbtchii i phyzicheskoy sorbtcii vodoroda uglerodnymi nanostructurami. Alternativnaya energetica i ecologya. 2(22), 64–73 (2005)

    Google Scholar 

  93. P. Ruffieux, O. Groning, M. Bielman, P. Groning, Hydrogen chemisorption on sp2-bonded carbon: influence of the local curvature and local electronic effects. Appl. Phys. A 78, 975–980 (2004)

    Article  ADS  Google Scholar 

  94. L. Sabir, W. Lu, C. Roland, J. Bernholc, Ab initio simulations of H2 in Li-doped carbon nanotube system. arXiv: cond-mat/ 0608432v1. 18 Aug. 2006

    Google Scholar 

  95. Y. Zhao, Y.H. Kim, A.C. Dillon, M.J. Heben, S.B. Zhang, Hydrogen storage in novel organometallic buckyballs. Phys. Rev. Lett. 94(15), 155504 (2005)

    Google Scholar 

  96. T. Yildirim, S. Ciraci, Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. Phys. Rev. Lett. 94(17), 175501 (2005)

    Google Scholar 

  97. S.V. Bulyarskiy, V.V. Fistul, The thermodynamics and kinetics of the interaction of defects in semiconductors. Moscov. Sience, 351 (1997) (Rus.)

    Google Scholar 

  98. S.V. Bulyarskiy, V.V. Svetuhin, Physical basis of defect management in semiconductors. Ulianovsk 385 (2003) (Rus.)

    Google Scholar 

  99. A. Nikitin, H. Ogasawara, D. Mann, R. Denecke, Z. Zhang et al., Hydrogenation of single-walled carbon nanotubes. Phys. Rev. Lett. 95, 225507 (2005)

    Article  ADS  Google Scholar 

  100. S. Dhiman, R. Kumar, K. Dharamvir, A density functional study of zigzag carbon nanotubes. (2011), 141. http://physics.puchd.ac.in/events/2010-2011/chascon2011/full-papers/Shobhna.pdf

  101. A. Rochefort, D.R. Salahub, P. Avouris, The effects of finite length on the electronic structure of carbon nanotubes. J. Phys. Chem. B. 103(4), 641–646 (1999)

    Article  Google Scholar 

  102. I. Cabria, M.J. Lopez, J.A. Alonso, Adsorption of hydrogen on normal and pentaheptite single wall carbon nanotubes. Eur. Phys. J. 34, 279—282 (2005)

    Google Scholar 

  103. P.I. Meshkov, Hydrogen storage using nanomaterials (2008), www.nanometer.ru/2008/04/22/konkurs_statej_47267.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Bulyarskiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bulyarskiy, S., Basaev, A.S., Bogdanova, D.A. (2017). Interaction of Hydrogen with a Graphene Plane of Carbon Nanotubes and Graphene. In: Bulyarskiy, S., Saurov, A. (eds) Doping of Carbon Nanotubes. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-55883-7_3

Download citation

Publish with us

Policies and ethics