Skip to main content

Adsorption and Doping as Methods for the Electronic Regulation Properties of Carbon Nanotubes

  • Chapter
  • First Online:
Doping of Carbon Nanotubes

Part of the book series: NanoScience and Technology ((NANO))

  • 564 Accesses

Abstract

This chapter contains general information about the doping of carbon nanotubes, which allows the reader better understand the main problem addressed in the book. It examines the interaction of gas molecules with the graphene lattice, discusses the differences between physical and chemical adsorption, as well as the differences between chemical adsorption and doping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.V. Bulyarskiy, Uglerodnye nanotrubky: techologya, upravlenie svoystvami, primenenie (Streshen, Ulyanovsk, 2011), 479 p (Rus.)

    Google Scholar 

  2. A. Tchernatinsky, B. Nagabhinrava, S. Desai et al., Adsorption oxygen molecules on individual Carbon single-walled nanotubes. arXiv: cond-mat/0502012 (2005)

    Google Scholar 

  3. H. Ulbricht, G. Moos, T. Hertel, Physisorption of molecular oxygen on single-walled Carbon nanotubes bundles and graphite. arXiv: cond-mat/0204525 (2005)

    Google Scholar 

  4. S.V. Bulyarskiy, A.S. Basaev, Thermodynamics and kinetics of adsorption of atoms and molecules with carbon nanotubes. ZhETF 135(4), 788–799 (2009)

    Google Scholar 

  5. S.V. Bulyarskiy, A.S. Basaev, Adsorption by carbon nanotubes. Nano Microsyst. 12(116), 16–55 (2009)

    Google Scholar 

  6. V.A. Eletskiy, Sorption properties of carbon nanostructures. Adv. Phys. Sci. 174(11), 1191–1231 (2004)

    Google Scholar 

  7. M.R. Pederson, J.Q. Broughton, Phys. Rev. Lett. 69, 2689 (1992)

    Article  ADS  Google Scholar 

  8. P.M. Ajayan, S. Iijima, Nature 361, 333 (1993)

    Article  ADS  Google Scholar 

  9. T.W. Ebbesen, Annu. Rev. Mater. Sci. 24, 235 (1994)

    Article  ADS  Google Scholar 

  10. T.W. Ebbesen, Phys. Today 49(6), 26 (1996)

    Article  Google Scholar 

  11. M.S. Fuhrer, J. Nygard, L. Shih, M. Forero, Y.G. Yoon, H.J. Choi, J. Ihm, S.G. Louie, A. Zettl, P.L. McEuen, Crossed nanotube junctions. Science 288(5465), 494–497 (2000)

    Article  ADS  Google Scholar 

  12. K.J. Ziegler, Z. Gu, J. Shaver, Z. Chen et al., Cutting single-walled carbon nanotubes. Nanotechnology 16(7), 539–544 (2005)

    Article  Google Scholar 

  13. K.J. Ziegler, Z. Gu, H. Peng, E.L. Flor, R.H. Hauge, R.E. Smalley, Controlled oxidative cutting of single-walled carbon nanotubes. J. Am. Chem. Soc. 127(5), 1541–1547 (2005)

    Article  Google Scholar 

  14. C. Wang, S. Guo, X. Pan, W. Chen, X. Bao, Tailored cutting of carbon nanotubes and controlled dispersion of metal nanoparticles inside their channels. J. Mater. Chem. 18, 5782–5786 (2008)

    Article  Google Scholar 

  15. S.J. Tans, A.R.M. Verchueren, C. Dekker, Nature 93, 49–54 (1998)

    ADS  Google Scholar 

  16. R. Martel, T. Scmidt et al., Appl. Phys. Lett. 73, 2447–2454 (1998)

    Article  ADS  Google Scholar 

  17. O.B. Tomilin, U.U. Murumin, Adsorption on the graphene surface of carbon nanotubes and their energy spectrum. Phys. Solid State 48(3), 563–571 (2006)

    Article  Google Scholar 

  18. O.B. Tomilin, P.V. Avramov, A.A. Kuzovov, S.G. Ovchinikov, G.L. Pashkov, Connection the chemical properties of carbon nanotubes with their atomic and electronic structure. Phys. Solid State 46(6), 1143–1146 (2004)

    Article  Google Scholar 

  19. A.C. Dillon, K.M. Jonse, T.A. Bekkedhai, C.H. Kiang, Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377–379 (1997)

    Article  ADS  Google Scholar 

  20. P. Chen, X. Wu, J. Lin, K.L. Tan, High uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285, 91–99 (1999)

    Article  Google Scholar 

  21. K.K. Murata, K. Kaneko, Adsorption mechanism of supercritical hydrogen in internal and interstitial nanospaces of single-wall carbon nanohorn assembly. J. Phys. Chem. B. 106, 1132–1138 (2002)

    Google Scholar 

  22. V. Gayathri, R. Geetha, Hydrogen adsorption in defected carbon nanotubes. Adsorption 13, 53–60 (2007)

    Article  Google Scholar 

  23. Y. Ye, C.C. Ahn, C. Witham, B. Fultz, J. Liu, A.G. Rinzler, D. Colbert, K.A. Smith, R.E. Smalley, Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett. 74, 2307–2309 (1999)

    Article  ADS  Google Scholar 

  24. C. Liu, Y.Y. Fan, M. Liu, H.T. Conga, H.M. Cheng, M.S. Dresselhaus, Hydrogen in single-walled carbon nanotubes at room temperature. Science 286, 1127–1132 (1999)

    Article  Google Scholar 

  25. R.F. Cracknell, Simulation of hydrogen adsorption in carbon nanotubes. Mol. Phys. 100, 2079–2086 (2002)

    Article  ADS  Google Scholar 

  26. J. Cheng, X. Yuan, L. Zhao, D. Huang, Review of hydrogen storage in inorganic fullerene-like nanotubes. Carbon 42, 2019–2037 (2004)

    Article  Google Scholar 

  27. S.V. Bulyarsky, V.P. Oleinicov, Thermodynamics of defect interaction in compound semiconducters. Phys. Stat. Sol. (b) 146, 439–453 (1988)

    Article  ADS  Google Scholar 

  28. K. Tada, S. Furuya, K. Watanabe, Ab initio study of hydrogen adsorption to single-walled carbon nanotubes. Phys. Rev. B. 63, 155–179 (2001)

    Article  Google Scholar 

  29. V. Gayathri, R. Geetha, Hydrogen adsorption in defected carbon nanotubes. Adsorption 13, 53–59 (2007)

    Article  Google Scholar 

  30. S.V. Bulyarskiy, V.P. Oleinicov, Thermodynamically evaluation of point defect density and impurity solubility in component semiconductor. Phys. Stat. Sol. (b) 141, K7–K10 (1987)

    Article  ADS  Google Scholar 

  31. S.V. Bulyarskiy, V.V. Fistul, The Thermodynamics and Kinetics of the Interaction of Defects in Semiconductors (Science, Moscow, 1997), 351 p

    Google Scholar 

  32. S.V. Bulyarskiy, V.V. Svetuhin, Physical Basis of Defect Management in Semiconductors (Ulianovsk, 2003), 385 p (Rus.)

    Google Scholar 

  33. B. Trepnel, Chemisorption (M.: Moscow, 1958), 327 p

    Google Scholar 

  34. Y.S. Nechaev, O chemosorbtchii i phyzicheskoy sorbtcii vodoroda uglerodnymi nanostructurami. Alternativnaya energetica i ecologya 2(22), 64–73 (2005). (Rus.)

    Google Scholar 

  35. F.F. Volkinshteyn, Physical Chemistry of Semiconductor Surfaces. (Science, Moscow, 1973), 399 p (Rus.)

    Google Scholar 

  36. V.A. Lykah, E.S. Syrkin, Influence of adsorbed molecules on the spectrum of carriers in a semiconductor nanowire. Semiconductors 39, 610–615 (2005)

    Google Scholar 

  37. A. Proykova, in Molecular Dynamic Simulation of Gas Adsorption and Absorption in Nanotubes, Carbon Nanotubes (Springer, Berlin, 2006), pp 187–207

    Google Scholar 

  38. Y.A. Zarifayntc, J. Phys. Chem. 38, 2655–2664 (1964)

    Google Scholar 

  39. V.F. Kisilev, O.V. Krylov, Adsorption Processes on the Surface of Semiconductors and Dielectrics (Science, Moscow, 1978), 255 p (Rus.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandr Saurov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Saurov, A. (2017). Adsorption and Doping as Methods for the Electronic Regulation Properties of Carbon Nanotubes. In: Bulyarskiy, S., Saurov, A. (eds) Doping of Carbon Nanotubes. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-55883-7_1

Download citation

Publish with us

Policies and ethics