Skip to main content

The Static and Stochastic VRP with Time Windows and both Random Customers and Reveal Times

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10200))

Included in the following conference series:

  • 1104 Accesses

Abstract

Static and stochastic vehicle routing problems (SS-VRP) aim at modeling and solving real life problems by considering uncertainty on the data. In particular, customer data may not be known with certainty. Before the beginning of the day, probability distributions on customer data are used to compute a first-stage solution that optimizes an expected cost. Customer data are revealed online, while the solution is executed, and a recourse strategy is applied on the first-stage solution to quickly adapt it. Existing SS-VRP variants usually make a strong assumption on the time at which a stochastic customer reveals its data (e.g., when a vehicle arrives at the corresponding location). We introduce a new SS-VRP where customer reveal times are stochastic. We define first-stage solutions and a recourse strategy for this new problem. A key point is to introduce waiting locations that are used in the first stage-solution to wait for the realization of customer stochastic data. We show how to compute the expected cost of a first-stage solution in pseudo polynomial time, in the particular case where the vehicles are not constrained by a maximal capacity. We also introduce a local search-based approach for optimizing the first-stage solution, and introduce a scale parameter to tune the precision and cost of the expected cost computation. Experimental results on small to large instances demonstrate its efficiency and flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bent, R.W., Van Hentenryck, P.: Waiting and relocation strategies in online stochastic vehicle routing. In: IJCAI, pp. 1816–1821 (2007)

    Google Scholar 

  2. Ichoua, S., Gendreau, M., Potvin, J.Y.: Exploiting knowledge about future demands for real-time vehicle dispatching. Transp. Sci. 40(2), 211–225 (2006)

    Article  Google Scholar 

  3. Saint-Guillain, M., Deville, Y., Solnon, C.: A multistage stochastic programming approach to the dynamic and stochastic VRPTW. In: CPAIOR, pp. 357–374 (2015)

    Google Scholar 

  4. Branke, J., Middendorf, M., Noeth, G., Dessouky, M.: Waiting strategies for dynamic vehicle routing. Transp. Sci. 39(3), 298–312 (2005)

    Article  Google Scholar 

  5. Bertsimas, D.J.: A vehicle routing problem with stochastic demand. Oper. Res. 40(3), 574–585 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jaillet, P.: Probabilistic traveling salesman problems. Ph.D. thesis, Massachusetts Institute of Technology (1985)

    Google Scholar 

  7. Laporte, G., Louveaux, F.V., Mercure, H.: A priori optimization of the probabilistic traveling salesman problem. Oper. Res. 42(3), 543–549 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Laporte, G., Louveaux, F.V.: The integer L-shaped method for stochastic integer programs with complete recourse. Oper. Res. Lett. 13(3), 133–142 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jezequel, A.: Probabilistic vehicle routing problems. Ph.D. thesis, Massachusetts Institute of Technology (1985)

    Google Scholar 

  10. Bertsimas, D.J., Chervi, P., Peterson, M.: Computational approaches to stochastic vehicle routing problems. Transp. Sci. 29(4), 342–352 (1995)

    Article  MATH  Google Scholar 

  11. Bianchi, L., Campbell, A.M.: Extension of the 2-p-opt and 1-shift algorithms to the heterogeneous probabilistic traveling salesman problem. Eur. J. Oper. Res. 176(1), 131–144 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bowler, N.E., Fink, T.M., Ball, R.C.: Characterisation of the probabilistic travelling salesman problem. Phys. Rev. E 68(3), 036703 (2003)

    Article  Google Scholar 

  13. Bianchi, L., Gambardella, L.M., Dorigo, M.: An ant colony optimization approach to the probabilistic traveling salesman problem. In: Guervós, J.J.M., Adamidis, P., Beyer, H.-G., Schwefel, H.-P., Fernández-Villacañas, J.-L. (eds.) International Conference on Parallel Problem Solving from Nature. LNCS, vol. 2439, pp. 883–892. Springer, Heidelberg (2002). doi:10.1007/3-540-45712-7_85

  14. Waters, C.D.J.: Vehicle-scheduling problems with uncertainty and omitted customers. J. Oper. Res. Soc. 40, 1099–1108 (1989)

    Article  MATH  Google Scholar 

  15. Gendreau, M., Laporte, G., Séguin, R.: An exact algorithm for the vehicle routing problem with stochastic demands and customers. Transp. Sci. 29(2), 143–155 (1995)

    Article  MATH  Google Scholar 

  16. Séguin, R.: Problèmes stochastiques de tournées de vehicules, Université de Montréal (1994)

    Google Scholar 

  17. Gendreau, M., Laporte, G., Séguin, R.: A tabu search heuristic for the vehicle routing problem with stochastic demands and customers. Oper. Res. 44(3), 469–477 (1996)

    Article  MATH  Google Scholar 

  18. Gounaris, C.E., Repoussis, P.P., Tarantilis, C.D., Wiesemann, W., Floudas, C.A.: An adaptive memory programming framework for the robust capacitated vehicle routing problem. Trans. Sci. 50(4), 1239–1260 (2014)

    Article  Google Scholar 

  19. Campbell, A.M., Thomas, B.W.: Probabilistic traveling salesman problem with deadlines. Transp. Sci. 42(1), 1–27 (2008)

    Article  Google Scholar 

  20. Henchiri, A., Bellalouna, M., Khaznaji, W.: A probabilistic traveling salesman problem: a survey. In: FedCSIS Position Papers, vol. 3, pp. 55–60, September 2014

    Google Scholar 

  21. Sungur, I., Ren, Y.: A model and algorithm for the courier delivery problem with uncertainty. Transp. Sci. 44(2), 193–205 (2010)

    Article  Google Scholar 

  22. Chao, I.M., Golden, B.L., Wasil, E.A.: The team orienteering problem. Eur. J. Oper. Res. 88(3), 464–474 (1996)

    Article  MATH  Google Scholar 

  23. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kindervater, G.A.P., Savelsbergh, M.W.P.: Vehicle routing: handling edge exchanges. In: Local search in combinatorial optimization, pp. 337–360 (1997)

    Google Scholar 

  25. Taillard, É., Badeau, P., Gendreau, M., Guertin, F., Potvin, J.Y.: A tabu search heuristic for the vehicle routing problem with soft time windows. Transp. Sci. 31(2), 170–186 (1997)

    Article  MATH  Google Scholar 

  26. Ahmed, S., Shapiro, A.: The sample average approximation method for stochastic programs with integer recourse (2002). Submitted for publication

    Google Scholar 

Download references

Acknowledgments

Christine Solnon is supported by the LABEX IMU (ANR-10-LABX-0088) of Université de Lyon, within the program “Investissements d’ Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Saint-Guillain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Saint-Guillain, M., Solnon, C., Deville, Y. (2017). The Static and Stochastic VRP with Time Windows and both Random Customers and Reveal Times. In: Squillero, G., Sim, K. (eds) Applications of Evolutionary Computation. EvoApplications 2017. Lecture Notes in Computer Science(), vol 10200. Springer, Cham. https://doi.org/10.1007/978-3-319-55792-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55792-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55791-5

  • Online ISBN: 978-3-319-55792-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics