Skip to main content

Statistics Instead of Stopover—Range Predictions for Electric Vehicles

  • Conference paper
  • First Online:
Operations Research Proceedings 2016

Part of the book series: Operations Research Proceedings ((ORP))

  • 1990 Accesses

Abstract

Electric vehicles (EVs) can play a central role in today’s efforts to reduce CO\(_2\) emission and slow down the climate change. Two of the most important reasons against purchase or use of an EV are its short range and long charging times. In the project “E-WALD—Elektromobilität Bayerischer Wald”, we develop mathematical models to predict the range of EVs by estimating the electrical power consumption (EPC) along possible routes. Based on the EPC forecasts the range is calculated and visualized by a range polygon on a navigation map. The models are based on data that are constantly collected by cars within a commercial car fleet. The dataset is modelled with three methods: a linear model, an additive model and a fully nonparametric model. To fit the linear model, ordinary least squares (OLS) regression as well as linear median regression are applied. The other models are fitted by modern machine learning algorithms: the additive model is fitted by boosting algorithm and the fully nonparametric model is fitted by support vector regression (SVR). The models are compared by mean absolute error (MAE). Our research findings show that data preparation is more influential than the chosen model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bühlmann, P., Hothorn, T.: Boosting algorithms: regularization, prediction and model fitting (with discussion). Stat. Sci. 22, 477–505 (2007). doi:10.1214/07-STS242

    Article  Google Scholar 

  2. Bühlmann, P., Yu, B.: Boosting with the \(l_2\)-loss: regression and classification. J. Am. Stat. Assoc. 98(462), 324–338 (2003). doi:10.1198/016214503000125

  3. Freund, Y., Schapire, R.E. (eds.): Experiments with a new boosting algorithm. In: Proceedings of the Thirteenth International Conference on Machine Learning Theory, Morgan Kaufmann Publishers Inc., San Francisco (1996)

    Google Scholar 

  4. Freund, Y., Schapire, R.E.: A decision—theoretic generalization of online learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997). doi:10.1006/jcss.1997.1504

    Article  Google Scholar 

  5. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001). doi:10.1214/aos/1013203451

    Article  Google Scholar 

  6. Friedman, J.H., Stuetzle, W.: Projection pursuit regression. J. Am. Stat. Assoc. 76(376), 817–823 (1981). doi:10.1080/01621459.1981.10477729

    Article  Google Scholar 

  7. Hastie, T.J., Tibshirani, R.J., Friedman, J.H.: The elements of statistical learning: Data mining, inference, and prediction, 2nd edn., corr. at 7. printing edn. Springer Series in Statistics. Springer, New York (2001)

    Google Scholar 

  8. Hothorn, T., Bühlmann, P., Kneib, T., Schmid, M., Hofner, B.: Model-based boosting 2.0. J. Mach. Learn. Res. 11, 2109–2113 (2010)

    Google Scholar 

  9. Hothorn, T., Bühlmann, P., Kneib, T., Schmid, M., Hofner, B.: mboost: Model-based boosting (2016). http://CRAN.R-project.org/package=mboost. R package version R package version 2.6-0

  10. Li, C., Cao, Y., Zhang, M., Wang, J., Liu, J., Shi, H., Geng, Y.: Hidden benefits of electric vehicles for addressing climate change. Sci. Rep. 5(9213) (2015). doi:10.1038/srep09213

  11. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT press, Massachusetts (2002)

    Google Scholar 

  12. Steinwart, I., Christmann, A., Jordan, M., Kleinberg, J., Schölkopf, B. (eds.): Support vector machines. Information Science and Statistics. Springer, New York (2008). doi:10.1007/978-0-387-77242-4. http://www.springerlink.com/content/uk1165

  13. Türnau, M.: Befragung von elektrofahrzeug–mieterinnen. Mobilität, Gesellschaft und Technik (2014). http://digital.bib-bvb.de/webclient/DeliveryManager?pid=7179727&custom_att_2=simple_viewer

  14. Vapnik, V.N.: Statistical Learning Theory. A Wiley-Interscience Publication. Wiley, New York (1998). http://www.loc.gov/catdir/description/wiley032/97037075.html

Download references

Acknowledgements

The E-WALD project and this study have been funded by the Bavarian State Ministry for Economic Affairs and Media, Energy and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kluge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Kluge, C., Schuster, S., Sellner, D. (2018). Statistics Instead of Stopover—Range Predictions for Electric Vehicles. In: Fink, A., Fügenschuh, A., Geiger, M. (eds) Operations Research Proceedings 2016. Operations Research Proceedings. Springer, Cham. https://doi.org/10.1007/978-3-319-55702-1_8

Download citation

Publish with us

Policies and ethics