Skip to main content

Bioeconomy: The Path to Sustainability

  • Chapter
  • First Online:
A Sustainable Bioeconomy

Abstract

As the global environmental, geopolitical, and socioeconomic situation started to worsen, humanity became aware that the current economic model based on fossil resources is not a viable one and its shortcomings are being sensed all over the world (economic crisis, global warming, accentuated disparities, recurrent pollution incidents, etc.). In response, a general consensus was made about the necessity to reintroduce biomass as the core element for the future economic model allowing a sustainable development, along with dealing with the major issues being faced by humanity nowadays.

In this chapter, the various definitions around the bioeconomy concept are presented, as well as the urgent need elaborate an authoritative definition of this concept in order to synchronize the efforts of all possible contributors (legislators, scientists, industrialists, etc.) for a wider promotion and implementation of this new economic model through a gradual and smooth transition in raw materials from fossil to renewal resources.

The main aim of bioeconomy is primarily to conduct the various agricultural, forestry, and industrial activities in a sustainable manner. Thus, in order to ensure a successful transition to bioeconomy, the key endeavor is to find out different viable schemes to combine both sustainability and profitability. This is definitely the major challenge to face bioeconomy for the next couple of decades. The leading role of science and technology in this vital transition phase towards sustainable bioeconomy is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Commission – Press release data base (February 2012). Commission adopts its strategy for a sustainable bioeconomy to ensure smart green growth in Europe. MEMO/12/97. http://europa.eu/rapid/press-release_MEMO-12-97_en.htm?locale=en

  2. Federal Ministry of Education and Research (BMBF). National Research Strategy BioEconomy 2030 – Our Route towards a biobased economy. Berlin; 2011. p. 56. Available online at: http://www.bmbf.de/en/1024.php?hilite=bioeconomy

  3. The Finnish bioeconomy strategy. http://biotalous.fi/wp-content/uploads/2014/08/The_Finnish_Bioeconomy_Strategy_110620141.pdf

  4. Organisation for Economic Co-operation and Development (OECD). The Bioeconomy to 2030: Designing a Policy Agenda. OECD Publishing, Paris; 2009. p. 322. http://www.oecd.org/futures/bioeconomy/2030

  5. Rosenau-Tornow D, Buchholz P, Riemann A, Wagner M. Assessing the long-term supply risks for mineral raw materials – a combined evaluation of past and future trends. Resour Policy. 2009;34:161–175l.

    Article  Google Scholar 

  6. Behrens A, Giljum S, Kovanda J, Niza S. The material basis of the global economy: worldwide patterns of natural resource extraction and their implications for sustainable resource use policies. Ecol Econ. 2007;64:444–53.

    Article  Google Scholar 

  7. Jansen RA. Second generation biofuels and biomass: essential guide for investors, scientists and decision makers. Weinheim: Wiley; 2013.

    Google Scholar 

  8. Keim W, Röper M. Use of renewable raw materials in the chemical industry. Position paper of DECHEMA, GDCh, VCI, DGMK, Frankfurt; 2008.

    Google Scholar 

  9. Coal: The fuel of the future, unfortunately. The Economist, April 16th 2014.

    Google Scholar 

  10. Betz MR, Partridge MD, Farren M, Lobao L. Coal mining, economic development, and the natural resources curse. Energy Econ. 2015;50:105–16.

    Article  Google Scholar 

  11. Castleden WM, Shearman D, Crisp G, Finch P. The mining and burning of coal: effects on health and the environment. Med J Aust. 2011;195:333–5.

    Article  Google Scholar 

  12. Cooper AI. Materials chemistry: cooperative carbon capture. Nature. 2015;519:294–5.

    Article  CAS  Google Scholar 

  13. Brienen RJW, Phillips OL, Feldpausch TR, et al. Long-term decline of the Amazon carbon sink. Nature. 2015;519:344–8.

    Article  CAS  Google Scholar 

  14. Manahan SE. Environmental science and technology: a sustainable approach to green science and technology. 2nd ed. Boca Raton, FL: CRC Press; 2006.

    Google Scholar 

  15. Kircher M. The transition to a bio-economy: national perspectives. Biofuels Bioprod Biorefin. 2012;6:240–5.

    Article  CAS  Google Scholar 

  16. Wood DJ. Corporate social performance revisited. Acad Manag Rev. 1991;16:691–718.

    Google Scholar 

  17. Martin PG. Sustainable profitability. Invensys systems white paper. 2011. http://iom.invensys.com/EN/pdfLibrary/WhitePaper_Invensys_SustainableProfitability_04-11.pdf

  18. Zilberman D, Kim E, Kirschner S, Kaplan S, Reeves J. Technology and the future bioeconomy. Agric Econ. 2013;44:95–102.

    Article  Google Scholar 

  19. Spratt S. Environmental taxation and development: a scoping study. IDS Working Papers. 2013;433:1–52.

    Article  Google Scholar 

  20. Cichocka D, Claxton J, Economidis I, Högel J, Venturi P, Aguilar A. European Union research and innovation perspectives on biotechnology. J Biotechnol. 2011;156:382–91.

    Article  CAS  Google Scholar 

  21. Pfau SF, Hagens JE, Dankbaar B, Smits AJM. Visions of sustainability in bioeconomy research. Sustainability. 2014;6:1222–49.

    Article  Google Scholar 

  22. The Energy Biosciences Institute. Annual report. 2014. http://www.energybiosciencesinstitute.org/sites/default/files/publications/2014_EBI_AR_0.pdf

  23. Kates RW, Clark WC, Corell R, et al. Sustainability science. Science. 2001;292:641–2.

    Article  CAS  Google Scholar 

  24. Clark WC. Sustainability science: a room of its own. Curr Issue. 2007;104:1737–8.

    CAS  Google Scholar 

  25. Miller TR, Wiek A, Sarewitz D, et al. The future of sustainability science: a solutions-oriented research agenda. Sustain Sci. 2014;9:239–46.

    Article  Google Scholar 

  26. Loorbach D. Governance for sustainability. Sustain Sci Pract Policy. 2007;3:1–5.

    Google Scholar 

  27. Tilman D, Fargione J, Wolff B, et al. Forecasting agriculturally driven global environmental change. Science. 2001;292:281–4.

    Article  CAS  Google Scholar 

  28. Sutton MA, Bleeker A, Howard CM, et al. Our nutrient world: the challenge to produce more food and energy with less pollution. Global overview of nutrient management. Edinburgh: Centre for Ecology and Hydrology; 2013.

    Google Scholar 

  29. De Wrachien D. Land use planning: a key to sustainable agriculture. In: García-Torres L, Benites J, Martínez-Vilela A, Holgado-Cabrera A, editors. Conservation agriculture: environment, farmers experiences, innovations, socio-economy, policy. Netherlands: Springer; 2003.

    Google Scholar 

  30. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S. Agricultural sustainability and intensive production practices. Nature. 2002;418:671–7.

    Article  CAS  Google Scholar 

  31. Tanaka H, Katsuta A, Toyota K, Sawada K. Soil fertility and soil microorganisms. In: Tojo S, Hirasawa T, editors. Research approaches to sustainable biomass systems. Oxford: Academic Press; 2014.

    Google Scholar 

  32. Ramirez KS, Lauber CL, Knight R, Bradford MA, Fierer N. Consistent effects of N fertilization on soil bacterial communities in contrasting systems. Ecology. 2010;91:3463–70.

    Article  Google Scholar 

  33. Liu C, Yao Z, Wang K, Zheng X. Three-year measurements of nitrous oxide emissions from cotton and wheat–maize rotational cropping systems. Atmos Environ. 2014;96:201–8.

    Article  CAS  Google Scholar 

  34. Gagnon B, Ziadi N, Rochette P, Chantigny MH, Angers DA. Fertilizer source influenced nitrous oxide emissions from a clay soil under corn. Soil Sci Soc Am J. 2011;75:595–604.

    Article  CAS  Google Scholar 

  35. Benoit M, Garnier J, Billen G, Tournebize J, Gréhan E, Mary B. Nitrous oxide emissions and nitrate leaching in an organic and a conventional cropping system (Seine basin, France). Agric Ecosyst Environ. 2015;213:131–41.

    Article  CAS  Google Scholar 

  36. U.S. Environmental Protection Agency, EPA Methane and nitrous oxide emissions from natural sources. Washington, DC. 2010. http://www.epa.gov/outreach/pdfs/Methane-and-Nitrous-Oxide-Emissions-From-Natural-Sources.pdf

  37. UNESCO Facts and figures – managing water under uncertainty and risk. 2012.http://www.unesco.org/new/fileadmin/MULTIMEDIA/HQ/SC/pdf/WWAP_WWDR4%20Facts%20and%20Figures.pdf

  38. Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge: Cambridge University Press; 2007.

    Google Scholar 

  39. Pimentel D, Berger B, Filiberto D, et al. Water resources: agricultural and environmental issues. BioScience. 2004;54:909–18.

    Article  Google Scholar 

  40. Haruna SI, Nkongolo NV. Cover crop management effects on soil physical and biological properties. Prog Environ Sci. 2015;29:13–4.

    Article  Google Scholar 

  41. Abdin OA, Zhou XM, Cloutier D, Coulman D, Favis MA, Smith DL. Cover crops and interrow tillage for weed control in short season maize (Zea mays L.). Eur J Agron. 2000;12:93–102.

    Article  Google Scholar 

  42. Plaza-Bonilla D, Nolot JM, Raffaillac D, Justes E. Cover crops mitigate nitrate leaching in cropping systems including grain legumes: field evidence and model simulations. Agric Ecosyst Environ. 2015;212:1–12.

    Article  CAS  Google Scholar 

  43. Solaiman ZM, Anawar HM. Application of biochars for soil constraints: challenges and solutions. Pedosphere. 2015;25:631–8.

    Article  Google Scholar 

  44. Zhang X, Wang H, He L, et al. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ Sci Pollut Res Int. 2013;20:8472–83.

    Article  CAS  Google Scholar 

  45. Wratten SD. Conservation biological control and biopesticides in agricultural. In: Jorgensen SE, Fath B, editors. Encyclopedia of ecology. Amsterdam: Elsevier; 2008. p. 744–7.

    Chapter  Google Scholar 

  46. Ash GJ. The science, art and business of successful bioherbicides. Biol Control. 2010;52:230–40.

    Article  Google Scholar 

  47. Díaz-Ambrona CH, Mínguez MI. Cereal–legume rotations in a Mediterranean environment: biomass and yield production. Field Crop Res. 2001;70:139–51.

    Article  Google Scholar 

  48. Zhong Z, Lemke RL, Nelson LM. Nitrous oxide emissions associated with nitrogen fixation by grain legumes. Soil Biol Biochem. 2009;41:2283–91.

    Article  CAS  Google Scholar 

  49. World Food Programme Hunger statistics. 2015. https://www.wfp.org/hunger/stats

  50. Shah A. Poverty around the world. 2011. http://www.globalissues.org/article/4/poverty-around-the-world

    Google Scholar 

  51. En route to the knowledge-based bio-economy. 2007. Koln conference paper. http://www.bio-economy.net/reports/files/koln_paper.pdf

  52. Padwal RS, Sharma AM. Prevention of cardiovascular disease: obesity, diabetes and the metabolic syndrome. Can J Cardiol. 2010;26:18–20.

    Article  Google Scholar 

  53. Jørgensen H. The role of industry in a transition towards the bioeconomy in relation to biorefinery. IEA Bioenergy report, Task 42 Biorefinery; 2015. p. 1–17.

    Google Scholar 

  54. Ollikainen M. Forestry in bioeconomy – smart green growth for the humankind. Scand J Forest Res. 2014;29:360–6.

    Article  Google Scholar 

  55. Lal P, Alavalapati JRR. Economic of forest biomass-based energy. In: Kant S, Alavalapati J, editors. Handbook of forest resource economics. London: Routledge; 2014. p. 275–89.

    Google Scholar 

  56. Fares S, Mugnozza GS, Corona P, Palahi M. Sustainability: five steps for managing Europe’s forests. Nature. 2015;519:407–9.

    Article  CAS  Google Scholar 

  57. Sheppard AW, Gillespie I, Hirsch M, Begley C. Biosecurity and sustainability within the growing global bioeconomy. Curr Opin Environ Sustain. 2011;3:4–10.

    Article  Google Scholar 

  58. Robertson GP, Dale VH, Doering OC, et al. Sustainable biofuels reflux. Science. 2008;322:49–50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sillanpää, M., Ncibi, C. (2017). Bioeconomy: The Path to Sustainability. In: A Sustainable Bioeconomy. Springer, Cham. https://doi.org/10.1007/978-3-319-55637-6_2

Download citation

Publish with us

Policies and ethics