Skip to main content

The Mitochondrial Outer Membrane Potential as an Electrical Feedback Control of Cell Energy Metabolism

  • Chapter
  • First Online:
Molecular Basis for Mitochondrial Signaling

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1064 Accesses

Abstract

Computational models were developed to demonstrate possible generation of mitochondrial outer membrane potential (OMP) due to a sustained transfer of negatively charged phosphoryl groups through the electrogenic complexes formed by the voltage-dependent anion channel (VDAC) and hexokinase (HK), VDAC and adenine nucleotide translocator (ANT), or VDAC and creatine kinase (CK) together with ANT. The thermodynamic estimations showed a high probability of generation of OMP (positive in the intermembrane space) by VDAC-HK complexes using the Gibbs free energy of the HK reaction. OMP, generated by the ANT-VDAC and ANT-CK-VDAC bi-transmembrane contact sites together with the inner membrane potential, may be positive or negative, depending on metabolic conditions, thus justifying the functionality of the essentially symmetrical bell-shaped VDAC’s voltage-gating properties. A decrease in the conductance and/or an increase in the voltage sensitivity of VDACs by various effectors potentiate OMP generation. On the other hand, the factors that prevent formation of VDAC-HK complexes could decrease OMP, causing an anti-Warburg effect. The computational analysis demonstrates the possibility of a combined, voltage gating and “molecular corking up” modulation of VDAC and, consequently, of the mitochondrial outer membrane permeability. It also predicts an influence of OMP on apparent values of the inner membrane potential measured with membrane-permeable charged fluorescent probes. The presented models suggest novel physiological mechanisms of OMP generation, as an electrical feedback control of the mitochondrial energy flux through the outer membrane, with possible implications in cell death resistance and electrical suppression of mitochondrial energetics in cancer cells, thus underlying the Warburg and Crabtree effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Hamad S, Zaid H, Israelson A, Nahon E, Shoshan-Barmatz V (2008) Hexokinase-I protection against apoptotic cell death is mediated via interaction with the voltage-dependent anion channel-1: mapping the site of binding. J Biol Chem 283(19):13482–13490

    Article  Google Scholar 

  • Azoula-Zohar H, Israelson A, Abu-Hamad S, Shoshan-Barmatz V (2004) In self-defence: hexokinase promotes VDAC closure and prevents mitochondria-mediated apoptotic cell death. Biochem J 377:347–355

    Article  Google Scholar 

  • Bagkos G, Koufopoulos K, Piperi C (2014) A new model for mitochondrial membrane potential production and storage. Med Hypotheses 83(2):175–181

    Article  Google Scholar 

  • Báthori G, Csordás G, Garcia-Perez C, Davies E, Hajnóczky G (2006) Ca2+-dependent control of the permeability properties of the mitochondrial outer membrane and voltage-dependent anion-selective channel (VDAC). J Biol Chem 281(25):17347–17358

    Article  Google Scholar 

  • Benz R, Kottke M, Brdiczka D (1990) The cationically selective state of the mitochondrial outer membrane pore: a study with intact mitochondria and reconstituted mitochondrial porin. Biochim Biophys Acta 1022:311–318

    Article  Google Scholar 

  • Bernier-Valentin F, Rousset B (1982) Interaction of tubulin with rat liver mitochondria. J Biol Chem 257(12):7092–7099

    Google Scholar 

  • Brdiczka DG, Zorov DB, Sheu SS (2006) Mitochondrial contact sites: their role in energy metabolism and apoptosis. Biochim Biophys Acta 1762:148–163

    Article  Google Scholar 

  • Chernoivanenko IS, Matveeva EA, Gelfand VI, Goldman RD, Minin AA (2015) Mitochondrial membrane potential is regulated by vimentin intermediate filaments. FASEB J 29(3):820–827

    Article  Google Scholar 

  • Colombini M (2004) VDAC: the channel at the interface between mitochondria and the cytosol. Mol Cell Biochem 256(1–2):107–115

    Article  Google Scholar 

  • Colombini M (2016) The VDAC channel: molecular basis for selectivity. Biochim Biophys Acta 1863(10):2498–2502

    Article  Google Scholar 

  • Colombini M, Mannella CA (2012) VDAC, the early days. Biochim Biophys Acta 1818(6):1438–1443

    Article  Google Scholar 

  • Colombini M, Blachly-Dyson E, Forte M (1996) VDAC, a channel in the outer mitochondrial membrane. Ion Channels 4:169–202

    Article  Google Scholar 

  • De Pinto V, Reina S, Gupta A, Messina A, Mahalakshmi R (2016) Role of cysteines in mammalian VDAC isoforms’ function. Biochim Biophys Acta 1857(8):1219–1227

    Article  Google Scholar 

  • DeHart DN, Gooz M, Rostovtseva TK, Sheldon KL, Lemasters JJ, Maldonado EN (2014) Antagonists of the inhibitory effect of free tubulin on VDAC induce oxidative stress and mitochondrial dysfunction. Biophys J 106(Issue 2):p591a

    Article  Google Scholar 

  • Denis-Pouxviel C, Riesinger I, Buhler C, Brdiczka D, Murat J-C (1987) Regulation of mitochondrial hexokinase in cultured HT 29 human cancer cells: an ultrastructural and biochemical study. Biochim Biophys Acta 902:335–348

    Article  Google Scholar 

  • Gerencser AA, Chinopoulos C, Birket MJ, Jastroch M, Vitelli C, Nicholls DG, Brand MD (2012) Quantitative measurement of mitochondrial membrane potential in cultured cells: calcium-induced de- and hyperpolarization of neuronal mitochondria. J Physiol 590(12):2845–2871

    Article  Google Scholar 

  • Gray MW (2012) Mitochondrial evolution. Cold Spring Harb Perspect Biol 4(9):a011403

    Article  Google Scholar 

  • Grimm S, Brdiczka D (2007) The permeability transition pore in cell death. Apoptosis 12(5):841–855

    Article  Google Scholar 

  • Guzun R, Kaambre T, Bagur R, Grichine A, Usson Y, Varikmaa M, Anmann T, Tepp K, Timohhina N, Shevchuk I, Chekulayev V, Boucher F, Dos Santos P, Schlattner U, Wallimann T, Kuznetsov AV, Dzeja P, Aliev M, Saks V (2015) Modular organization of cardiac energy metabolism: energy conversion, transfer and feedback regulation. Acta Physiol (Oxford) 213(1):84–106

    Article  Google Scholar 

  • Head SA, Shi W, Zhao L, Gorshkov K, Pasunooti K, Chen Y, Deng Z, Li RJ, Shim JS, Tan W, Hartung T, Zhang J, Zhao Y, Colombini M, Liu JO (2015) Antifungal drug itraconazole targets VDAC1 to modulate the AMPK/mTOR signaling axis in endothelial cells. Proc Natl Acad Sci U S A 112(52):E7276–E7285

    Article  Google Scholar 

  • Hodge T, Colombini M (1997) Regulation of metabolite flux through voltage-gating of VDAC channels. J Membr Biol 157(3):271–279

    Article  Google Scholar 

  • Holden MJ, Colombini M (1993) The outer mitochondrial channel, VDAC, is modulated by a protein localized in the intermembrane space. Biochim Biophys Acta 1144:396–402

    Article  Google Scholar 

  • Jeneson JA, ter Veld F, Schmitz JP, Meyer RA, Hilbers PA, Nicolay K (2011) Similar mitochondrial activation kinetics in wild-type and creatine kinase-deficient fast-twitch muscle indicate significant Pi control of respiration. Am J Physiol Regul Integr Comp Physiol 300(6):R1316–R1325

    Article  Google Scholar 

  • John S, Weiss JN, Ribalet B (2011) Subcellular localization of hexokinases I and II directs the metabolic fate of glucose. PLoS One 6(3):e17674

    Article  ADS  Google Scholar 

  • Kamo N, Muratsugu M, Kurihara K, Kobatake Y (1976) Change in surface charge density and membrane potential of intact mitochondria during energization. FEBS Lett 72(2):247–250

    Article  Google Scholar 

  • Kerner J, Lee K, Tandler B, Hoppel CL (2012) VDAC proteomics: post-translation modifications. Biochim Biophys Acta 1818(6):1520–1525

    Article  Google Scholar 

  • Korzeniewski B, Mazat J-R (1996) Theoretical studies of the control of oxidative phosphorylation in muscle mitochondria: application to mitochondria deficiencies. Biochem J 319:143–148

    Article  Google Scholar 

  • Kottke M, Adams V, Wallimann T, Nalam VK, Brdiczka D (1991) Location and regulation of octameric mitochondrial creatine kinase in the contact sites. Biochim Biophys Acta 1061:215–225

    Article  Google Scholar 

  • Krammer EM, Vu GT, Homblé F, Prévost M (2015) Dual mechanism of ion permeation through VDAC revealed with inorganic phosphate ions and phosphate metabolites. PLoS One 10(4):e0121746

    Article  Google Scholar 

  • Kuznetsov AV, Javadov S, Guzun R, Grimm M, Saks V (2013) Cytoskeleton and regulation of mitochondrial function: the role of beta-tubulin II. Front Physiol 4:82

    Article  Google Scholar 

  • Lee AC, Xu X, Colombini M (1996) The role of pyridine dinucleotides in regulating the permeability of the mitochondrial outer membrane. J Biol Chem 271(43):26724–26731

    Article  Google Scholar 

  • Lemasters JJ, Holmuhamedov E (2006) Voltage-dependent anion channel (VDAC) as mitochondrial governator – thinking outside the box. Biochim Biophys Acta 1762(2):181–190

    Article  Google Scholar 

  • Lemasters JJ, Ramshesh VK (2007) Imaging of mitochondrial polarization and depolarization with cationic fluorophores. Methods Cell Biol 80:283–295

    Article  Google Scholar 

  • Lemeshko VV (2002) Model of the outer membrane potential generation by the inner membrane of mitochondria. Biophys J 82:684–692

    Article  Google Scholar 

  • Lemeshko VV (2006) Theoretical evaluation of a possible nature of the outer membrane potential of mitochondria. Eur Biophys J 36:57–66

    Article  Google Scholar 

  • Lemeshko VV (2014a) VDAC electronics: 1. VDAC-hexo(gluco)kinase generator of the mitochondrial outer membrane potential. Biochim Biophys Acta 1838:1362–1371

    Article  Google Scholar 

  • Lemeshko VV (2014b) Competitive interactions of amphipathic polycationic peptides and cationic fluorescent probes with lipid membrane: experimental approaches and computational model. Arch Biochem Biophys 545:167–178

    Article  Google Scholar 

  • Lemeshko V (2015) The Warburg effect as a VDAC-hexokinase-mediated electrical suppression of mitochondrial energy metabolism. FASEB J 29(Suppl 1):725.27

    Google Scholar 

  • Lemeshko VV (2016) VDAC electronics: 3. VDAC-creatine kinase-dependent generation of the outer membrane potential in respiring mitochondria. Biochim Biophys Acta 1858(7 PtA):1411–1418

    Article  Google Scholar 

  • Lemeshko SV, Lemeshko VV (2000) Metabolically derived potential on the outer membrane of mitochondria: a computational model. Biophys J 79:2785–2800

    Article  Google Scholar 

  • Lemeshko SV, Lemeshko VV (2004) Energy flux modulation on the outer membrane of mitochondria by metabolically-derived potential. Mol Cell Biochem 256–257:127–139

    Article  Google Scholar 

  • Liu MY, Colombini M (1992) A soluble mitochondrial protein increases the voltage dependence of the mitochondrial channel, VDAC. J Bioenerg Biomembr 24:41–46

    Article  Google Scholar 

  • Maldonado EN, Lemasters JJ (2014) ATP/ADP ratio, the missed connection between mitochondria and the Warburg effect. Mitochondrion 19(Pt A):78–84

    Article  Google Scholar 

  • Maldonado EN, Patnaik J, Mullins MR, Lemasters JJ (2010) Free tubulin modulates mitochondrial membrane potential in cancer cells. Cancer Res 70(24):10192–10201

    Article  Google Scholar 

  • Maldonado EN, Sheldon KL, DeHart DN, Patnaik J, Manevich Y, Townsend DM, Bezrukov SM, Rostovtseva TK, Lemasters JJ (2013) Voltage-dependent anion channels modulate mitochondria metabolism in cancer cells: regulation by free tubulin and erastin. J Biol Chem 288(17):11920–11929

    Article  Google Scholar 

  • Mangan PS, Colombini M (1987) Ultrasteep voltage dependence in a membrane channel. Proc Natl Acad Sci U S A 84(14):4896–4900

    Article  ADS  Google Scholar 

  • Mannella CA (1982) Structure of the outer mitochondrial membrane: ordered arrays of porelike subunits in outer-membrane fractions from Neurospora crassa mitochondria. J Cell Biol 94:680–687

    Article  Google Scholar 

  • Mannella CA, Forte M, Colombini M (1992) Toward the molecular structure of the mitochondrial channel, VDAC. J Bioenerg Biomembr 24:7–19

    Article  Google Scholar 

  • Marín-Hernández A, Rodríguez-Enríquez S, Vital-González PA, Flores-Rodríguez FL, Macías-Silva M, Sosa-Garrocho M, Moreno-Sánchez R (2006) Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase. FEBS J 273(9):1975–1988

    Article  Google Scholar 

  • Martin W, Hoffmeister M, Rotte C, Henze K (2001) An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem 382:1521–1539

    Article  Google Scholar 

  • Mathupala SP, Pedersen PL (2010) Voltage dependent anion channel-1 (VDAC-1) as an anti-cancer target. Cancer Biol Ther 9(12):1053–1056

    Article  Google Scholar 

  • Maurya SR, Mahalakshmi R (2015) N-helix and cysteines inter-regulate human mitochondrial VDAC-2 function and biochemistry. J Biol Chem 290(51):30240–30252

    Google Scholar 

  • Messina A, Reina S, Guarino F, De Pinto V (2012) VDAC isoforms in mammals. Biochim Biophys Acta 1818:1466–1476

    Article  Google Scholar 

  • Okazaki M, Kurabayashi K, Asanuma M, Saito Y, Dodo K, Sodeoka M (2015) VDAC3 gating is activated by suppression of disulfide-bond formation between the N-terminal region and the bottom of the pore. Biochim Biophys Acta 1848(12):3188–3196

    Article  Google Scholar 

  • Pastorino JG, Hoek JB (2008) Regulation of hexokinase binding to VDAC. J Bioenerg Biomembr 40(3):171–182

    Article  Google Scholar 

  • Pastorino JG, Hoek JB, Shulga N (2005) Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res 65(22):10545–10554

    Article  Google Scholar 

  • Pinz I, Ostroy SE, Hoyer K, Osinska H, Robbins J, Molkentin JD, Ingwall JS (2008) Calcineurin-induced energy wasting in a transgenic mouse model of heart failure. Am J Physiol Heart Circ Physiol 294(3):H1459–H1466

    Article  Google Scholar 

  • Porcelli AM, Ghelli A, Zanna C, Pinton P, Rizzuto R, Rugolo M (2005) pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant. Biochem Biophys Res Commun 326:799–804

    Article  Google Scholar 

  • Rimmerman N, Ben-Hail D, Porat Z, Juknat A, Kozela E, Daniels MP, Connelly PS, Leishman E, Bradshaw HB, Shoshan-Barmatz V, Vogel Z (2013) Direct modulation of the outer mitochondrial membrane channel, voltage-dependent anion channel 1 (VDAC1) by cannabidiol: a novel mechanism for cannabinoid-induced cell death. Cell Death Dis 4:e949

    Article  Google Scholar 

  • Rostovtseva TK, Bezrukov SM (2008) VDAC regulation: role of cytosolic proteins and mitochondrial lipids. J Bioenerg Biomembr 40(3):163–170

    Article  Google Scholar 

  • Rostovtseva TK, Bezrukov SM (2012) VDAC inhibition by tubulin and its physiological implications. Biochim Biophys Acta 1818(6):1526–1535

    Article  Google Scholar 

  • Rostovtseva TK, Bezrukov SM (2015) Function and regulation of mitochondrial voltage-dependent anion channel. Springer Series in Biophysics. In: Delcour AH (ed) Electrophysiology of unconventional channels and pores, vol 18. Springer International Publishing Cham Springer Series in Biophysics pp 3–31

    Google Scholar 

  • Rostovtseva T, Colombini M (1997) VDAC channels mediate and gate the flow of ATP: implications for the regulation of mitochondrial function. Biophys J 72(5):1954–1962

    Article  Google Scholar 

  • Rostovtseva TK, Tan W, Colombini M (2005) On the role of VDAC in apoptosis: fact and fiction. J Bioenerg Biomembr 37(3):129–142

    Article  Google Scholar 

  • Rostovtseva TK, Sheldon KL, Hassanzadeh E, Monge C, Saks V, Bezrukov SM, Sackett DL (2008) Tubulin binding blocks mitochondrial voltage-dependent anion channel and regulates respiration. Proc Natl Acad Sci U S A 105(48):18746–18751

    Article  ADS  Google Scholar 

  • Rostovtseva TK, Gurnev PA, Protchenko O, Hoogerheide DP, Yap TL, Philpott CC, Lee JC, Bezrukov SM (2015) α-synuclein shows high affinity interaction with voltage-dependent anion channel, suggesting mechanisms of mitochondrial regulation and toxicity in Parkinson disease. J Biol Chem 290(30):18467–18477

    Article  Google Scholar 

  • Saks VA, Kuznetsov AV, Khuchua ZA, Vasilyeva EV, Belikova JO, Kesvatera T, Tiivel T (1995) Control of cellular respiration in vivo by mitochondrial outer membrane and by creatine kinase. A new speculative hypothesis: possible involvement of mitochondrial-cytoskeleton interactions. J Mol Cell Cardiol 27:625–645

    Article  Google Scholar 

  • Saks V, Guzun R, Timohhina N, Tepp K, Varikmaa M, Monge C, Beraud N, Kaambre T, Kuznetsov A, Kadaja L, Eimre M, Seppet E (2010) Structure-function relationships in feedback regulation of energy fluxes in vivo in health and disease: mitochondrial interactosome. Biochim Biophys Acta 1797(6–7):678–697

    Article  Google Scholar 

  • Scheibye-Knudsen M, Quistorff B (2009) Regulation of mitochondrial respiration by inorganic phosphate; comparing permeabilized muscle fibers and isolated mitochondria prepared from type-1 and type-2 rat skeletal muscle. Eur J Appl Physiol 105(2):279–287

    Article  Google Scholar 

  • Schlattner U, Tokarska-Schlattner M, Wallimann T (2006) Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta 1762:164–180

    Article  Google Scholar 

  • Sheldon KL, Maldonado EN, Lemasters JJ, Rostovtseva TK, Bezrukov SM (2011) Phosphorylation of voltage-dependent anion channel by serine/threonine kinases governs its interaction with tubulin. PLoS One 6(10):e25539

    Article  ADS  Google Scholar 

  • Sheldon KL, Gurnev PA, Bezrukov SM, Sackett DL (2015) Tubulin tail sequences and post-translational modifications regulate closure of mitochondrial voltage-dependent anion channel (VDAC). J Biol Chem 290(44):26784–26789

    Article  Google Scholar 

  • Shoshan-Barmatz V, Ben-Hail D (2012) VDAC, a multi-functional mitochondrial protein as a pharmacological target. Mitochondrion 12(1):24–34

    Article  Google Scholar 

  • Shoshan-Barmatz V, Gincel D (2003) The voltage-dependent anion channel – characterization, modulation, and role in mitochondrial function in cell life and death. Cell Biochem Biophys 39:279–292

    Article  Google Scholar 

  • Shoshan-Barmatz V, De Pinto V, Zweckstetter M, Raviv Z, Keinan N, Arbel N (2010) VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Asp Med 31(3):227–285

    Article  Google Scholar 

  • Shoshan-Barmatz V, Ben-Hail D, Admoni L, Krelin Y, Tripathi SS (2015) The mitochondrial voltage-dependent anion channel 1 in tumor cells. Biochim Biophys Acta 1848(10 Pt B):2547–2575

    Article  Google Scholar 

  • Simson P, Jepihhina N, Laasmaa M, Peterson P, Birkedal R, Vendelin M (2016) Restricted ADP movement in cardiomyocytes: cytosolic diffusion obstacles are complemented with a small number of open mitochondrial voltage-dependent anion channels. J Mol Cell Cardiol 97:197–203

    Article  Google Scholar 

  • Smilansky A, Dangoor L, Nakdimon I, Ben-Hail D, Mizrachi D, Shoshan-Barmatz V (2015) The voltage-dependent anion channel 1 mediates amyloid β toxicity and represents a potential target for Alzheimer disease therapy. J Biol Chem 290(52):30670–30683

    Article  Google Scholar 

  • Spindler M, Niebler R, Remkes H, Horn M, Lanz T, Neubauer S (2002) Mitochondrial creatine kinase is critically necessary for normal myocardial high-energy phosphate metabolism. Am J Physiol Heart Circ Physiol 283:H680–H687

    Article  Google Scholar 

  • Stein CA, Colombini M (2008) Specific VDAC inhibitors: phosphorothioate oligonucleotides. J Bioenerg Biomembr 40(3):157–162

    Article  Google Scholar 

  • Teijido O, Rappaport SM, Chamberlin A, Noskov SY, Aguilella VM, Rostovtseva TK, Bezrukov SM (2014) Acidification asymmetrically affects voltage-dependent anion channel implicating the involvement of salt bridges. J Biol Chem 289(34):23670–23682

    Article  Google Scholar 

  • Vander Heiden MG, Chandel NS, Schumacker PT, Thompson CB (1999) Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol Cell 3(2):159–167

    Article  Google Scholar 

  • Vander Heiden MG, Chandel NS, Li XX, Schumacker PT, Colombini M, Thompson CB (2000) Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc Natl Acad Sci U S A 97(9):4666–4671

    Article  ADS  Google Scholar 

  • Wallimann T (2015) The extended, dynamic mitochondrial reticulum in skeletal muscle and the creatine kinase (CK)/phosphocreatine (PCr) shuttle are working hand in hand for optimal energy provision. J Muscle Res Cell Motil 36(4–5):297–300

    Article  Google Scholar 

  • Wallimann T, Tokarska-Schlattner M, Schlattner U (2011) The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40:1271–1296

    Article  Google Scholar 

  • Wallis J, Lygate CA, Fischer A, ten Hove M, Schneider JE, Sebag-Montefiore L, Dawson D, Hulbert K, Zhang W, Zhang MH, Watkins H, Clarke K, Neubauer S (2005) Supranormal myocardial creatine and phosphocreatine concentrations lead to cardiac hypertrophy and heart failure: insights from creatine transporter-overexpressing transgenic mice. Circulation 112:3131–3139

    Article  Google Scholar 

  • Wilson JE (2003) Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 206(Pt 12):2049–2057

    Article  Google Scholar 

  • Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, Wolpaw AJ, Smukste I, Peltier JM, Boniface JJ, Smith R, Lessnick SL, Sahasrabudhe S, Stockwell BR (2007) RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447:864–868

    Article  ADS  Google Scholar 

  • Zhang YX, Zhao W, Tang YJ (2016) Multilevel induction of apoptosis by microtubule-interfering inhibitors 4β-S-aromatic heterocyclic podophyllum derivatives causing multi-fold mitochondrial depolarization and PKA signaling pathways in HeLa cells. Oncotarget 7(17):24303–24313

    Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Andriy Anishkin and Dr. Sergy V. Lemeshko for their critical reading of the manuscript, discussion, and valuable observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor V. Lemeshko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lemeshko, V.V. (2017). The Mitochondrial Outer Membrane Potential as an Electrical Feedback Control of Cell Energy Metabolism. In: Rostovtseva, T. (eds) Molecular Basis for Mitochondrial Signaling. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-55539-3_9

Download citation

Publish with us

Policies and ethics