Skip to main content

Substrate Selection and Its Impact on Mitochondrial Respiration and Redox

  • Chapter
  • First Online:
Molecular Basis for Mitochondrial Signaling

Abstract

At the crossroad of fuels utilization, the pyruvate dehydrogenase (PDH) complex plays a key role in substrate selection (primarily of glucose and fatty acids (FAs)) by mitochondria. In mammals, substrate selection takes place in all organs although to differing degrees depending upon nutritional conditions, physiological status (e.g., feed-fast, exercise), and the absence or presence of disease (e.g., metabolic disorder, cancer). Nutritional states such as those given by starvation, diabetes , caloric restriction, or aging can favor the oxidation of FAs over carbohydrates or vice versa, in which case modulation of the PDH complex is critically important for favoring or hindering the conservation of carbohydrate reserves. In this work, we review the literature in the context of the capacity of a cell or organ to adjust fuel selection as a function of nutrient availability and its influence on mitochondrial energetic-redox functions. We also present a computational model of PDH which includes its regulation by multiple effectors (AcCoA, CoA, NADH , NAD, ATP, ADP, Ca2+, pyruvate) targeting specific kinases and phosphatases that render the enzymatic complex phosphorylated (inactive) or dephosphorylated (active), respectively. Selection by mitochondria between glucose and FAs at different relative levels of both substrates, and its impact on respiration, ROS emission, effector levels, and the fluxes through PDH and β-oxidation, are also presented and analyzed.

This chapter was created within the capacity of an US governmental employment. US copyright protection does not apply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal NT, Makielski JC (2013) Redox control of cardiac excitability. Antioxid Redox Signal 18:432–468

    Article  Google Scholar 

  • Akar FG, Aon MA, Tomaselli GF, O’Rourke B (2005) The mitochondrial origin of postischemic arrhythmias. J Clin Invest 115:3527–3535

    Article  Google Scholar 

  • Alleman RJ, Katunga LA, Nelson MA, Brown DA, Anderson EJ (2014) The “goldilocks zone” from a redox perspective-adaptive vs. deleterious responses to oxidative stress in striated muscle. Front Physiol 5:358

    Article  Google Scholar 

  • Alleman RJ, Tsang AM, Ryan TE, Patteson DJ, Mcclung JM, Spangenburg EE, Shaikh SR, Neufer PD, Brown DA (2016) Exercise-induced protection against reperfusion arrhythmia involves stabilization of mitochondrial energetics. Am J Physiol Heart Circ Physiol 310:H1360–H1370

    Article  Google Scholar 

  • Aon MA (2013) Complex systems biology of networks: the riddle and the challenge. In: Aon MA, Saks V, Schlattner U (eds) Systems biology of metabolic and signaling networks. energy, mass and information transfer, 1st edn. Springer-Verlag Berlin Heidelberg, Heidelberg

    Google Scholar 

  • Aon MA, Cortassa S, O’rourke B (2004) Percolation and criticality in a mitochondrial network. Proc Natl Acad Sci U S A 101:4447–4452

    Article  ADS  Google Scholar 

  • Aon MA, Cortassa S, Maack C, O’Rourke B (2007) Sequential opening of mitochondrial ion channels as a function of glutathione redox thiol status. J Biol Chem 282:21889–21900

    Article  Google Scholar 

  • Aon MA, Cortassa S, Akar FG, Brown DA, Zhou L, O’rourke B (2009) From mitochondrial dynamics to arrhythmias. Int J Biochem Cell Biol 41:1940–1948

    Article  Google Scholar 

  • Aon MA, Stanley BA, Sivakumaran V, Kembro JM, O’Rourke B, Paolocci N, Cortassa S (2012) Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: an experimental-computational study. J Gen Physiol 139:479–491

    Article  Google Scholar 

  • Aon MA, Bhatt N, Cortassa S (2014) Mitochondrial and cellular mechanisms for managing lipid excess. Front Physiol 5:1–13

    Article  Google Scholar 

  • Aon MA, Tocchetti CG, Bhatt N, Paolocci N, Cortassa S (2015) Protective mechanisms of mitochondria and heart function in diabetes. Antioxid Redox Signal 22:1563–1586

    Article  Google Scholar 

  • Aon MA, Cortassa S, Juhaszova M, Sollott SJ (2016) Mitochondrial health, the epigenome and healthspan. Clin Sci (Lond) 130:1285–1305

    Article  Google Scholar 

  • Bao H, Kasten SA, Yan X, Hiromasa Y, Roche TE (2004a) Pyruvate dehydrogenase kinase isoform 2 activity stimulated by speeding up the rate of dissociation of ADP. Biochemistry 43:13442–13451

    Article  Google Scholar 

  • Bao H, Kasten SA, Yan X, Roche TE (2004b) Pyruvate dehydrogenase kinase isoform 2 activity limited and further inhibited by slowing down the rate of dissociation of ADP. Biochemistry 43:13432–13441

    Article  Google Scholar 

  • Batenburg JJ, Olson MS (1976) Regulation of pyruvate dehydrogenase by fatty acid in isolated rat liver mitochondria. J Biol Chem 251:1364–1370

    Google Scholar 

  • Baxter MA, Coore HG (1978) The mode of regulation of pyruvate dehydrogenase of lactating rat mammary gland. Effects of starvation and insulin. Biochem J 174:553–561

    Article  Google Scholar 

  • Belke DD, Larsen TS, Lopaschuk GD, Severson DL (1999) Glucose and fatty acid metabolism in the isolated working mouse heart. Am J Phys 277:R1210–R1217

    Google Scholar 

  • Bellet MM, Sassone-Corsi P (2010) Mammalian circadian clock and metabolism – the epigenetic link. J Cell Sci 123:3837–3848

    Article  Google Scholar 

  • Bhatt NM, Aon MA, Tocchetti CG, Shen X, Dey S, Ramirez-Correa G, O’Rourke B, Gao WD, Cortassa S (2015) Restoring redox balance enhances contractility in heart trabeculae from type 2 diabetic rats exposed to high glucose. Am J Physiol Heart Circ Physiol 308:H291–H302

    Article  Google Scholar 

  • Boudina S, Abel ED (2010) Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord 11:31–39

    Article  Google Scholar 

  • Bowker-Kinley MM, Davis WI, Wu P, Harris. RA, Popov KM (1998) Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J 329(Pt 1):191–196

    Article  Google Scholar 

  • Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A, Chen YC, Cox JE, Cardon CM, Van Vranken JG, Dephoure N, Redin C, Boudina S, Gygi SP, Brivet M, Thummel CS, Rutter J (2012) A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337:96–100

    Article  ADS  Google Scholar 

  • Brown DA, Aon MA, Frasier CR, Sloan RC, Maloney AH, Anderson EJ, O’Rourke B (2010) Cardiac arrhythmias induced by glutathione oxidation can be inhibited by preventing mitochondrial depolarization. J Mol Cell Cardiol 48:673–679

    Article  Google Scholar 

  • Brownlee M (1995) Advanced protein glycosylation in diabetes and aging. Annu Rev Med 46:223–234

    Article  Google Scholar 

  • Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  ADS  Google Scholar 

  • Buchanan J, Mazumder PK, Hu P, Chakrabarti G, Roberts MW, Yun UJ, Cooksey RC, Litwin SE, Abel ED (2005) Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology 146:5341–5349

    Article  Google Scholar 

  • Burgoyne JR, Mongue-Din H, Eaton P, Shah AM (2012) Redox signaling in cardiac physiology and pathology. Circ Res 111:1091–1106

    Article  Google Scholar 

  • Carley AN, Severson DL (2005) Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochim Biophys Acta 1734:112–126

    Article  Google Scholar 

  • Cascante M, Marin S (2008) Metabolomics and fluxomics approaches. Essays Biochem 45:67–81

    Article  Google Scholar 

  • Cate RL, Roche TE (1978) A unifying mechanism for stimulation of mammalian pyruvate dehydrogenase(a) kinase by reduced nicotinamide adenine dinucleotide, dihydrolipoamide, acetyl coenzyme A, or pyruvate. J Biol Chem 253:496–503

    Google Scholar 

  • Choi SW, Benzie IF, Ma SW, Strain JJ, Hannigan BM (2008) Acute hyperglycemia and oxidative stress: direct cause and effect? Free Radic Biol Med 44:1217–1231

    Article  Google Scholar 

  • Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M (2014) The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol 15:536–550

    Article  Google Scholar 

  • Christians ES, Benjamin IJ (2012) Proteostasis and REDOX state in the heart. Am J Physiol Heart Circ Physiol 302:H24–H37

    Article  Google Scholar 

  • Cortassa S, O’Rourke B, Aon MA (2014) Redox-optimized ROS balance and the relationship between mitochondrial respiration and ROS. Biochim Biophys Acta 1837:287–295

    Article  Google Scholar 

  • Cortassa S, Caceres V, Bell LN, O’Rourke B, Paolocci N, Aon MA (2015) From metabolomics to fluxomics: a computational procedure to translate metabolite profiles into metabolic fluxes. Biophys J 108:163–172

    Article  Google Scholar 

  • Crane D, Haussinger D, Graf P, Sies H (1983) Decreased flux through pyruvate dehydrogenase by thiol oxidation during t-butyl hydroperoxide metabolism in perfused rat liver. Hoppe Seylers Z Physiol Chem 364:977–987

    Article  Google Scholar 

  • D’autreaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824

    Article  Google Scholar 

  • Dedkova EN, Blatter LA (2008) Mitochondrial Ca2+ and the heart. Cell Calcium 44:77–91

    Article  Google Scholar 

  • Denton RM, Mccormack JG, Thomas AP (1986) Mechanisms whereby insulin and other hormones binding to cell surface receptors influence metabolic pathways within the inner membrane of mitochondria. Ann N Y Acad Sci 488:370–384

    Article  ADS  Google Scholar 

  • Denton RM, Mccormack JG, Rutter GA, Burnett P, Edgell NJ, Moule SK, Diggle TA (1996) The hormonal regulation of pyruvate dehydrogenase complex. Adv Enzym Regul 36:183–198

    Article  Google Scholar 

  • Denyer GS, Kerbey AL, Randle PJ (1986) Kinase activator protein mediates longer-term effects of starvation on activity of pyruvate dehydrogenase kinase in rat liver mitochondria. Biochem J 239:347–354

    Article  Google Scholar 

  • Dey S, Sidor A, O’Rourke B (2016) Compartment-specific control of reactive oxygen species scavenging by antioxidant pathway enzymes. J Biol Chem 291:11185–11197

    Google Scholar 

  • Donohoe DR, Bultman SJ (2012) Metaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expression. J Cell Physiol 227:3169–3177

    Article  Google Scholar 

  • Eaton S (2002) Control of mitochondrial beta-oxidation flux. Prog Lipid Res 41:197–239

    Article  Google Scholar 

  • Eaton S, Bartlett K, Pourfarzam M (1996) Mammalian mitochondrial beta-oxidation. Biochem J 320(Pt 2):345–357

    Article  Google Scholar 

  • Egan B, Zierath JR (2013) Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 17:162–184

    Article  Google Scholar 

  • Fauconnier J, Andersson DC, Zhang SJ, Lanner JT, Wibom R, Katz A, Bruton JD, Westerblad H (2007) Effects of palmitate on Ca(2+) handling in adult control and ob/ob cardiomyocytes: impact of mitochondrial reactive oxygen species. Diabetes 56:1136–1142

    Article  Google Scholar 

  • Finkel T (2015) The metabolic regulation of aging. Nat Med 21:1416–1423

    Article  Google Scholar 

  • Fisher-Wellman KH, Neufer PD (2012) Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol Metab 23:142–153

    Article  Google Scholar 

  • Foster DW (2012) Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. J Clin Invest 122:1958–1959

    Article  Google Scholar 

  • Foster DB, Liu T, Rucker J, O’Meally RN, Devine LR, Cole RN, O’Rourke B (2013) The cardiac acetyl-lysine proteome. PLoS One 8:e67513

    Article  ADS  Google Scholar 

  • Gauthier LD, Greenstein JL, Cortassa S, O’Rourke B, Winslow RL (2013) A computational model of reactive oxygen species and redox balance in cardiac mitochondria. Biophys J 105:1045–1056

    Article  Google Scholar 

  • Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070

    Article  Google Scholar 

  • Gray LR, Sultana MR, Rauckhorst AJ, Oonthonpan L, Tompkins SC, Sharma A, Fu X, Miao R, Pewa AD, Brown KS, Lane EE, Dohlman A, Zepeda-Orozco D, Xie J, Rutter J, Norris AW, Cox JE, Burgess SC, Potthoff MJ, Taylor EB (2015) Hepatic mitochondrial pyruvate carrier 1 is required for efficient regulation of gluconeogenesis and whole-body glucose homeostasis. Cell Metab 22:669–681

    Article  Google Scholar 

  • Hafstad AD, Boardman N, Aasum E (2015) How exercise may amend metabolic disturbances in diabetic cardiomyopathy. Antioxid Redox Signal 22:1587–1605

    Article  Google Scholar 

  • Hansford RG (1976) Studies on the effects of coenzyme A-SH: acetyl coenzyme A, nicotinamide adenine dinucleotide: reduced nicotinamide adenine dinucleotide, and adenosine diphosphate: adenosine triphosphate ratios on the interconversion of active and inactive pyruvate dehydrogenase in isolated rat heart mitochondria. J Biol Chem 251:5483–5489

    Google Scholar 

  • Hansford RG (1983) Bioenergetics in aging. Biochim Biophys Acta 726:41–80

    Article  Google Scholar 

  • Hoek JB, Rydstrom J (1988) Physiological roles of nicotinamide nucleotide transhydrogenase. Biochem J 254:1–10

    Article  Google Scholar 

  • Holness MJ, Sugden MC (1990) Glucose utilization in heart, diaphragm and skeletal muscle during the fed-to-starved transition. Biochem J 270:245–249

    Article  Google Scholar 

  • Holness MJ, Maclennan PA, Palmer TN, Sugden MC (1988) The disposition of carbohydrate between glycogenesis, lipogenesis and oxidation in liver during the starved-to-fed transition. Biochem J 252:325–330

    Article  Google Scholar 

  • Holness MJ, Kraus A, Harris RA, Sugden MC (2000) Targeted upregulation of pyruvate dehydrogenase kinase (PDK)-4 in slow-twitch skeletal muscle underlies the stable modification of the regulatory characteristics of PDK induced by high-fat feeding. Diabetes 49:775–781

    Article  Google Scholar 

  • Huang B, Gudi R, Wu P, Harris RA, Hamilton J, Popov KM (1998) Isoenzymes of pyruvate dehydrogenase phosphatase. DNA-derived amino acid sequences, expression, and regulation. J Biol Chem 273:17680–17688

    Article  Google Scholar 

  • Hue L, Taegtmeyer H (2009) The Randle cycle revisited: a new head for an old hat. Am J Physiol Endocrinol Metab 297:E578–E591

    Article  Google Scholar 

  • Jeong EM, Liu M, Sturdy M, Gao G, Varghese ST, Sovari AA, Dudley SC Jr (2012) Metabolic stress, reactive oxygen species, and arrhythmia. J Mol Cell Cardiol 52:454–463

    Article  Google Scholar 

  • Jones DP (2002) Redox potential of GSH/GSSG couple: assay and biological significance. Methods Enzymol 348:93–112

    Article  Google Scholar 

  • Jones DP, Go YM (2010) Redox compartmentalization and cellular stress. Diabetes Obes Metab 12(Suppl 2):116–125

    Article  ADS  Google Scholar 

  • Jones DP, Sies H (2015) The redox code. Antioxid Redox Signal 23:734–746

    Article  Google Scholar 

  • Jones BS, Yeaman SJ, Sugden MC, Holness MJ (1992) Hepatic pyruvate dehydrogenase kinase activities during the starved-to-fed transition. Biochim Biophys Acta 1134:164–168

    Article  Google Scholar 

  • Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ (2004) Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 113:1535–1549

    Article  Google Scholar 

  • Kaludercic N, Deshwal S, Di Lisa F (2014) Reactive oxygen species and redox compartmentalization. Front Physiol 5:285

    Article  Google Scholar 

  • Kashiwaya Y, Sato K, Tsuchiya N, Thomas S, Fell DA, Veech RL, Passonneau JV (1994) Control of glucose utilization in working perfused rat heart. J Biol Chem 269:25502–25514

    Google Scholar 

  • Keating ST, El-Osta A (2015) Epigenetics and metabolism. Circ Res 116:715–736

    Article  Google Scholar 

  • Kelley DE, Mandarino LJ (2000) Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes 49:677–683

    Article  Google Scholar 

  • Kembro JM, Aon MA, Winslow RL, O’Rourke B, Cortassa S (2013) Integrating mitochondrial energetics, redox and ROS metabolic networks: a two-compartment model. Biophys J 104:332–343

    Article  Google Scholar 

  • Kembro JM, Cortassa S, Aon MA (2014) Complex oscillatory redox dynamics with signaling potential at the edge between normal and pathological mitochondrial function. Front Physiol 5:257

    Article  Google Scholar 

  • Kienesberger PC, Pulinilkunnil T, Nagendran J, Dyck JR (2013) Myocardial triacylglycerol metabolism. J Mol Cell Cardiol 55:101–110

    Article  Google Scholar 

  • Kolwicz SC Jr, Tian R (2009) Metabolic therapy at the crossroad: how to optimize myocardial substrate utilization? Trends Cardiovasc Med 19:201–207

    Article  Google Scholar 

  • Kurz FT, Aon MA, O’Rourke B, Armoundas AA (2010) Spatio-temporal oscillations of individual mitochondria in cardiac myocytes reveal modulation of synchronized mitochondrial clusters. Proc Natl Acad Sci U S A 107:14315–14320

    Article  ADS  Google Scholar 

  • Kurz FT, Aon MA, O’Rourke B, Armoundas AA (2014) Cardiac mitochondria exhibit dynamic functional clustering. Front Physiol 5:329

    Article  Google Scholar 

  • Kurz FT, Derungs T, Aon MA, O’Rourke B, Armoundas AA (2015) Mitochondrial networks in cardiac myocytes reveal dynamic coupling behavior. Biophys J 108:1922–1933

    Article  Google Scholar 

  • Kurz FT, Kembro JM, Flesia AG, Armoundas AA, Cortassa S, Aon MA, Lloyd D (2016) Network dynamics: quantitative analysis of complex behavior in metabolism, organelles and cells, from experiments to models and back. Wiley Interdiscip Rev Syst Biol Med. doi:10.1002/wsbm.1352

    Google Scholar 

  • Laakso M (1999) Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes 48:937–942

    Article  Google Scholar 

  • Lanpher B, Brunetti-Pierri N, Lee B (2006) Inborn errors of metabolism: the flux from Mendelian to complex diseases. Nat Rev Genet 7:449–460

    Article  Google Scholar 

  • Lasker RD (1993) The diabetes control and complications trial. Implications for policy and practice. N Engl J Med 329:1035–1036

    Article  Google Scholar 

  • Lee J, Homma T, Kurahashi T, Kang ES, Fujii J (2015) Oxidative stress triggers lipid droplet accumulation in primary cultured hepatocytes by activating fatty acid synthesis. Biochem Biophys Res Commun 464:229–235

    Article  Google Scholar 

  • Lesnefsky EJ, Chen Q, Hoppel CL (2016) Mitochondrial metabolism in aging heart. Circ Res 118:1593–1611

    Article  Google Scholar 

  • Lionetti V, Stanley WC, Recchia FA (2011) Modulating fatty acid oxidation in heart failure. Cardiovasc Res 90:202–209

    Article  Google Scholar 

  • Liu T, Takimoto E, Dimaano VL, Demazumder D, Kettlewell S, Smith G, Sidor A, Abraham TP, O’Rourke B (2014) Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden death in a Guinea pig model of heart failure. Circ Res 115:44–54

    Article  Google Scholar 

  • Lloyd D, Cortassa S, O’Rourke B, Aon MA (2012) What yeast and cardiomyocytes share: ultradian oscillatory redox mechanisms of cellular coherence and survival. Integr Biol (Camb) 4:65–74

    Article  Google Scholar 

  • Lopaschuk GD (2002) Metabolic abnormalities in the diabetic heart. Heart Fail Rev 7:149–159

    Article  Google Scholar 

  • Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258

    Article  Google Scholar 

  • Luiken JJ, Niessen HE, Coort SL, Hoebers N, Coumans WA, Schwenk RW, Bonen A, Glatz JF (2009) Etomoxir-induced partial carnitine palmitoyltransferase-I (CPT-I) inhibition in vivo does not alter cardiac long-chain fatty acid uptake and oxidation rates. Biochem J 419:447–455

    Article  Google Scholar 

  • Mailloux RJ (2015) Still at the center of it all: novel functions of the oxidative krebs cycle. Bioenergetics 4:122

    Article  Google Scholar 

  • Malloch GD, Munday LA, Olson MS, Clark JB (1986) Comparative development of the pyruvate dehydrogenase complex and citrate synthase in rat brain mitochondria. Biochem J 238:729–736

    Article  Google Scholar 

  • Marchington DR, Kerbey AL, Jones AE, Randle PJ (1987) Insulin reverses effects of starvation on the activity of pyruvate dehydrogenase kinase in cultured hepatocytes. Biochem J 246:233–236

    Article  Google Scholar 

  • Mcknight SL (2010) On getting there from here. Science 330:1338–1339

    Article  ADS  Google Scholar 

  • Mitchell SJ, Madrigal-Matute J, Scheibye-Knudsen M, Fang E, Aon M, Gonzalez-Reyes JA, Cortassa S, Kaushik S, Gonzalez-Freire M, Patel B, Wahl D, Ali A, Calvo-Rubio M, Buron MI, Guiterrez V, Ward TM, Palacios HH, Cai H, Frederick DW, Hine C, Broeskamp F, Habering L, Dawson J, Beasley TM, Wan J, Ikeno Y, Hubbard G, Becker KG, Zhang Y, Bohr VA, Longo DL, Navas P, Ferrucci L, Sinclair DA, Cohen P, Egan JM, Mitchell JR, Baur JA, Allison DB, Anson RM, Villalba JM, Madeo F, Cuervo AM, Pearson KJ, Ingram DK, Bernier M, De Cabo R (2016) Effects of sex, strain, and energy intake on hallmarks of aging in mice. Cell Metab 23:1093–1112

    Article  Google Scholar 

  • Muoio DM, Neufer PD (2012) Lipid-induced mitochondrial stress and insulin action in muscle. Cell Metab 15:595–605

    Article  Google Scholar 

  • Neely JR, Bowman RH, Morgan HE (1969) Effects of ventricular pressure development and palmitate on glucose transport. Am J Phys 216:804–811

    Google Scholar 

  • Nelson DL, Cox MM (2013) Lehninger principles of biochemistry. W. H. Freeman and Company, New York

    Google Scholar 

  • Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284:13291–13295

    Article  Google Scholar 

  • Nickel A, Kohlhaas M, Maack C (2014) Mitochondrial reactive oxygen species production and elimination. J Mol Cell Cardiol 73:26–33

    Article  Google Scholar 

  • Nickel AG, von Hardenberg A, Hohl M, Loffler JR, Kohlhaas M, Becker J, Reil JC, Kazakov A, Bonnekoh J, Stadelmaier M, Puhl SL, Wagner M, Bogeski I, Cortassa S, Kappl R, Pasieka B, Lafontaine M, Lancaster CR, Blacker TS, Hall AR, Duchen MR, Kastner L, Lipp P, Zeller T, Muller C, Knopp A, Laufs U, Bohm M, Hoth M, Maack C (2015) Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure. Cell Metab 22:472–484

    Article  Google Scholar 

  • Nulton-Persson AC, Starke DW, Mieyal JJ, Szweda LI (2003) Reversible inactivation of alpha-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status. Biochemistry 42:4235–4242

    Article  Google Scholar 

  • Oram JF, Bennetch SL, Neely JR (1973) Regulation of fatty acid utilization in isolated perfused rat hearts. J Biol Chem 248:5299–5309

    Google Scholar 

  • Pettit FH, Pelley JW, Reed LJ (1975) Regulation of pyruvate dehydrogenase kinase and phosphatase by acetyl-CoA/CoA and NADH/NAD ratios. Biochem Biophys Res Commun 65:575–582

    Article  Google Scholar 

  • Quinlan CL, Goncalves RL, Hey-Mogensen M, Yadava N, Bunik VI, Brand MD (2014) The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I. J Biol Chem 289:8312–8325

    Article  Google Scholar 

  • Randle PJ (1986) Fuel selection in animals. Biochem Soc Trans 14:799–806

    Article  Google Scholar 

  • Randle PJ (1998) Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev 14:263–283

    Article  Google Scholar 

  • Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785–789

    Article  Google Scholar 

  • Ravindran S, Radke GA, Guest JR, Roche TE (1996) Lipoyl domain-based mechanism for the integrated feedback control of the pyruvate dehydrogenase complex by enhancement of pyruvate dehydrogenase kinase activity. J Biol Chem 271:653–662

    Article  Google Scholar 

  • Roche TE, Hiromasa Y (2007) Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes, heart ischemia, and cancer. Cell Mol Life Sci 64:830–849

    Article  Google Scholar 

  • Roche TE, Baker JC, Yan X, Hiromasa Y, Gong X, Peng T, Dong J, Turkan A, Kasten SA (2001) Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Prog Nucleic Acid Res Mol Biol 70:33–75

    Article  Google Scholar 

  • Roul D, Recchia FA (2015) Metabolic alterations induce oxidative stress in diabetic and failing hearts: different pathways, same outcome. Antioxid Redox Signal 22:1502–1514

    Article  Google Scholar 

  • Rydstrom J (2006) Mitochondrial NADPH, transhydrogenase and disease. Biochim Biophys Acta 1757:721–726

    Article  Google Scholar 

  • Salminen A, Kaarniranta K, Hiltunen M, Kauppinen A (2014) Krebs cycle dysfunction shapes epigenetic landscape of chromatin: novel insights into mitochondrial regulation of aging process. Cell Signal 26:1598–1603

    Article  Google Scholar 

  • Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212

    Article  Google Scholar 

  • Schonfeld P, Wojtczak L (2008) Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radic Biol Med 45:231–241

    Article  Google Scholar 

  • Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183

    Article  Google Scholar 

  • Singh R, Cuervo AM (2012) Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol 2012:282041

    Article  Google Scholar 

  • Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135

    Article  ADS  Google Scholar 

  • Stanley BA, Sivakumaran V, Shi S, Mcdonald I, Lloyd D, Watson WH, Aon MA, Paolocci N (2011) Thioredoxin reductase-2 is essential for keeping low levels of H(2)O(2) emission from isolated heart mitochondria. J Biol Chem 286:33669–33677

    Article  Google Scholar 

  • Steussy CN, Popov KM, Bowker-Kinley MM, Sloan RB Jr, Harris RA, Hamilton JA (2001) Structure of pyruvate dehydrogenase kinase. Novel folding pattern for a serine protein kinase. J Biol Chem 276:37443–37450

    Article  Google Scholar 

  • Sugden MC, Holness MJ (1994) Interactive regulation of the pyruvate dehydrogenase complex and the carnitine palmitoyltransferase system. FASEB J 8:54–61

    Google Scholar 

  • Sugden MC, Fryer LG, Holness MJ (1996) Regulation of hepatic pyruvate dehydrogenase kinase by insulin and dietary manipulation in vivo. Studies with the euglycaemic-hyperinsulinaemic clamp. Biochim Biophys Acta 1316:114–120

    Article  Google Scholar 

  • Sugden MC, Orfali KA, Fryer LG, Holness MJ, Priestman DA (1997) Molecular mechanisms underlying the long-term impact of dietary fat to increase cardiac pyruvate dehydrogenase kinase: regulation by insulin, cyclic AMP and pyruvate. J Mol Cell Cardiol 29:1867–1875

    Article  Google Scholar 

  • Sugden MC, Fryer LG, Orfali KA, Priestman DA, Donald E, Holness MJ (1998) Studies of the long-term regulation of hepatic pyruvate dehydrogenase kinase. Biochem J 329(Pt 1):89–94

    Article  Google Scholar 

  • Sugden MC, Holness MJ, Donald E, Lall H (1999) Substrate interactions in the short- and long-term regulation of renal glucose oxidation. Metabolism 48:707–715

    Article  Google Scholar 

  • Sugden MC, Kraus A, Harris RA, Holness MJ (2000) Fibre-type specific modification of the activity and regulation of skeletal muscle pyruvate dehydrogenase kinase (PDK) by prolonged starvation and refeeding is associated with targeted regulation of PDK isoenzyme 4 expression. Biochem J 346(Pt 3):651–657

    Article  Google Scholar 

  • Sung MM, Hamza SM, Dyck JR (2015) Myocardial metabolism in diabetic cardiomyopathy: potential therapeutic targets. Antioxid Redox Signal 22:1606–1630

    Article  Google Scholar 

  • Swain L, Kesemeyer A, Meyer-Roxlau S, Vettel C, Zieseniss A, Guntsch A, Jatho A, Becker A, Nanadikar MS, Morgan B, Dennerlein S, Shah AM, El-Armouche A, Nikolaev VO, Katschinski DM (2016) Redox imaging using cardiac myocyte specific transgenic biosensor mice. Circ Res 119:1004–1016

    Google Scholar 

  • Thomas AP, Denton RM (1986) Use of toluene-permeabilized mitochondria to study the regulation of adipose tissue pyruvate dehydrogenase in situ. Further evidence that insulin acts through stimulation of pyruvate dehydrogenase phosphate phosphatase. Biochem J 238:93–101

    Article  Google Scholar 

  • Thomas AP, Diggle TA, Denton RM (1986) Sensitivity of pyruvate dehydrogenase phosphate phosphatase to magnesium ions. Similar effects of spermine and insulin. Biochem J 238:83–91

    Article  Google Scholar 

  • Tocchetti CG, Caceres V, Stanley BA, Xie C, Shi S, Watson WH, O’rourke B, Spadari-Bratfisch RC, Cortassa S, Akar FG, Paolocci N, Aon MA (2012) GSH or palmitate preserves mitochondrial energetic/redox balance, preventing mechanical dysfunction in metabolically challenged myocytes/hearts from type 2 diabetic mice. Diabetes 61:3094–3105

    Article  Google Scholar 

  • Tocchetti CG, Stanley BA, Sivakumaran V, Bedja D, O’Rourke B, Paolocci N, Cortassa S, Aon MA (2015) Impaired mitochondrial energy supply coupled to increased H2O2 emission under energy/redox stress leads to myocardial dysfunction during Type I diabetes. Clin Sci (Lond) 129:561–574

    Article  Google Scholar 

  • Tocchi A, Quarles EK, Basisty N, Gitari L, Rabinovitch PS (2015) Mitochondrial dysfunction in cardiac aging. Biochim Biophys Acta 1847:1424–1433

    Article  Google Scholar 

  • Van Bilsen M, Van Nieuwenhoven FA, Van Der Vusse GJ (2009) Metabolic remodelling of the failing heart: beneficial or detrimental? Cardiovasc Res 81:420–428

    Article  Google Scholar 

  • Van Eunen K, Simons SM, Gerding A, Bleeker A, Den Besten G, Touw CM, Houten SM, Groen BK, Krab K, Reijngoud DJ, Bakker BM (2013) Biochemical competition makes fatty-acid beta-oxidation vulnerable to substrate overload. PLoS Comput Biol 9:e1003186

    Article  ADS  Google Scholar 

  • Wallace DC (2010) The epigenome and the mitochondrion: bioenergetics and the environment [corrected]. Genes Dev 24:1571–1573

    Article  Google Scholar 

  • Wallace DC, Fan W (2010) Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10:12–31

    Article  Google Scholar 

  • Walther TC, Farese RV Jr (2009) The life of lipid droplets. Biochim Biophys Acta 1791:459–466

    Article  Google Scholar 

  • Walther TC, Farese RV Jr (2012) Lipid droplets and cellular lipid metabolism. Annu Rev Biochem 81:687–714

    Article  Google Scholar 

  • Wang H, Sreenevasan U, Hu H, Saladino A, Polster BM, Lund LM, Gong DW, Stanley WC, Sztalryd C (2011) Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J Lipid Res 52:2159–2168

    Article  Google Scholar 

  • Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–1080

    Article  ADS  Google Scholar 

  • Williamson JR, Chang K, Frangos M, Hasan KS, Ido Y, Kawamura T, Nyengaard JR, Van Den Enden M, KILO C, Tilton RG (1993) Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 42:801–813

    Article  Google Scholar 

  • Wojtczak L, Schonfeld P (1993) Effect of fatty acids on energy coupling processes in mitochondria. Biochim Biophys Acta 1183:41–57

    Article  Google Scholar 

  • Wu P, Sato J, Zhao Y, Jaskiewicz J, Popov KM, Harris RA (1998) Starvation and diabetes increase the amount of pyruvate dehydrogenase kinase isoenzyme 4 in rat heart. Biochem J 329(Pt 1):197–201

    Article  Google Scholar 

  • Wu P, Blair PV, Sato J, Jaskiewicz J, Popov KM, Harris RA (2000) Starvation increases the amount of pyruvate dehydrogenase kinase in several mammalian tissues. Arch Biochem Biophys 381:1–7

    Article  Google Scholar 

  • Xie C, Biary N, Tocchetti CG, Aon MA, Paolocci N, Kauffman J, Akar FG (2013) Glutathione oxidation unmasks proarrhythmic vulnerability of chronically hyperglycemic guinea pigs. Am J Physiol Heart Circ Physiol 304:H916–H926

    Article  Google Scholar 

  • Yan J, Lawson JE, Reed LJ (1996) Role of the regulatory subunit of bovine pyruvate dehydrogenase phosphatase. Proc Natl Acad Sci U S A 93:4953–4956

    Article  ADS  Google Scholar 

  • Yang D, Gong X, Yakhnin A, Roche TE (1998) Requirements for the adaptor protein role of dihydrolipoyl acetyltransferase in the up-regulated function of the pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase. J Biol Chem 273:14130–14137

    Article  Google Scholar 

  • Zhang S, Hulver MW, Mcmillan RP, Cline MA, Gilbert ER (2014) The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutr Metab (Lond) 11:10

    Article  Google Scholar 

  • Zhou L, Aon MA, Almas T, Cortassa S, Winslow RL, O’Rourke B (2010) A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network. PLoS Comput Biol 6:e1000657

    Article  ADS  Google Scholar 

  • Zima AV, Blatter LA (2006) Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res 71:310–321

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Research Program of the National Institutes of Health, National Institute on Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Aon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cortassa, S., Sollott, S.J., Aon, M.A. (2017). Substrate Selection and Its Impact on Mitochondrial Respiration and Redox. In: Rostovtseva, T. (eds) Molecular Basis for Mitochondrial Signaling. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-55539-3_13

Download citation

Publish with us

Policies and ethics