Skip to main content

Abiotic Stress Induced Epigenetic Modifications in Plants: How Much Do We Know?

  • Chapter
  • First Online:
Plant Epigenetics

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Epigenetics has evolved rapidly over the last two decades as a contemporary field of biology. In present day, it represents the heritable mitotic or even meiotic genetic change which does not alter the DNA sequence. Plants are considered as the masters of epigenetic regulation since they have the capability of rapid and reversible alteration of their epigenetic state and also maintaining a stable “memory” of it. Plants being sessile in nature are exposed to adverse environmental conditions which hampers their growth, development, productivity, and survival. They have developed intricate mechanisms at molecular level to withstand such stressful situations. Recent studies have documented the epigenetic control on stress-responsive mechanisms in response to various abiotic stresses. Several epigenetic mechanisms identified so far involve DNA methylation, histone modifications (acetylation, methylation, phosphorylation, ubiquitination, biotinylation, and sumoylation), chromatin remodeling, and small RNA (miRNA and siRNA) directed DNA methylation. Plants make wide use of DNA methylation as an epigenetic mark and undergo histone modifications to carry out transcriptional as well as posttranscriptional gene silencing programs. In this chapter, we have recapitulated the historical overview of the field of epigenetics followed by the various epigenetic mechanisms and lastly reviewed the studies related to various abiotic stress responses to understand the role of different epigenetic mechanisms in different plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADA2:

Alternation/deficiency in activation 2

AGO:

ARGONAUTE

CAM:

Crassulacean acid metabolism

CBF1:

C-repeat/DRE binding factor1

CBP:

CREB-binding protein

CLF:

CURLY LEAF

CMT3:

CHROMOMETHYLASE3

DCLs:

Dicer-Like

DME:

Demeter

DML:

Demeter-Like

DRM:

DOMAINS REARRANGED METHYLASE

dsRNAs:

double-stranded RNAs

OsFIE1:

Orzya sativa Fertilization-Independent Endosperm1

GCN5:

General Control Non-derepressible5

GNAT:

GCN5-related N-terminal acetyltransferase

HATs:

histone acetyltransferases

HDACs:

histone deacetylases

HDMs:

histone demethylases

HKMTs:

histone lysine methyltransferase

HOS15:

High expression of osmotically responsive gene 15

HST1:

HASTY

JmjC:

Jumonji C

LSD1:

Lysine-Specific Demethylase1

m5C:

5-methylcytosine

MEA:

MEDEA

MET1:

DNA METHYLTRANSFERASE1

miRNAs:

microRNAs

MSAP:

Methylation sensitive amplification polymorphism

ncRNAs:

non-coding RNAs

NRPD1:

NUCLEAR RNA POLYMERASE D1

NRPE1:

Nuclear RNA Polymerase E1

pri-miRNAs:

primary miRNAs

RdDM:

RNA-directed DNA methylation

RDR:

RNA-dependent RNA polymerases

RISC:

RNA-induced silencing complex

ROS1:

Repressor of Silencing1

SAHH1:

S-ADENOSYL-L-HOMOCYSTEINE HYDROLASE1

SAM:

S-adenosyl L-methionine

SDN:

Small RNA Degrading Nuclease

siRNAs:

small interfering RNAs

sRNAs:

Small RNAs

ssRNAs:

single stranded RNAs

SWN:

SWINGER

TAFII250:

TATA binding protein-associated factors

References

  • Aina R, Sgorbati S, Santagostino A et al (2004) Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiol Plant 121(3):472–480

    Article  CAS  Google Scholar 

  • Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 51:786–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashapkin VV, Kutueva LI, Vanyushin BF (2002) The gene for domains rearranged methyltransferase (DRM2) in Arabidopsis thaliana plants is methylated at both cytosine and adenine residues. FEBS Lett 532:367–372

    Article  CAS  PubMed  Google Scholar 

  • Aufsatz W, Mette MF, Matzke AJ et al (2004) The role of MET1 in RNA-directed de novo and maintenance methylation of CG dinucleotides. Plant Mol Biol 54:793–804

    Article  CAS  PubMed  Google Scholar 

  • Avramova Z (2011) Epigenetic regulatory mechanisms in plants. In: Handbook of epigenetics: the new molecular and medical genetics, pp 251–278. doi:10.1016/B978-0-12-375709-8.00016-2

  • Bej S, Basak J (2014) MicroRNAs: the potential biomarkers in plant stress response. Am J Plant Sci 5:748–759

    Article  Google Scholar 

  • Bird A (2007) Perceptions of epigenetics. Nature 447:396–398

    Article  CAS  PubMed  Google Scholar 

  • Boden SA, Kavanová M, Finnegan EJ et al (2013) Thermal stress effects on grain yield in Brachypodium distachyon occur via H2A.Z- nucleosomes. Genome Biol 14:R65

    Article  PubMed  PubMed Central  Google Scholar 

  • Burbano HA (2006) Epigenetics and genetic determinism. História, Ciências, Saúde—Manguinhos, Rio de Janeiro 13:851–863

    Article  Google Scholar 

  • Buryanov YI, Eroshina NV, Vagabova LM et al (1972) On the detection of 6-methylaminopurine in DNA of higher plant pollen. Dokl Akad Nauk SSSR 206:992–994

    CAS  Google Scholar 

  • Cao X, Jacobsen SE (2002a) Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol 12:1138–1144

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Jacobsen SE (2002b) Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc Natl Acad Sci U S A 99:16491–16498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carey N (2012) The epigenetics revolution: how modern biology is rewriting our understanding of genetics, disease and inheritance. Icon Books, London

    Google Scholar 

  • Chen ZJ, Tian L (2007) Roles of dynamic and reversible histone acetylation in plant development and polyploidy. Biochim Biophys Acta 1769:295–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Zhang H, Jablonowski D et al (2006) Mutations in ABO1/ELO2, a subunit of holo-Elongator, increase abscisic acid sensitivity and drought tolerance in Arabidopsis thaliana. Mol Cell Biol 26:6902–6912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Zhu J-K (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:1–7

    Article  Google Scholar 

  • Choi CS, Sano H (2007) Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Genet Genomics 277:589–600

    Article  CAS  PubMed  Google Scholar 

  • Correia B, Valledor L, Meijon M et al (2013) Is the interplay between epigenetic markers related to the acclimation of cork oak plants to high temperatures? PLoS ONE 8:e53543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa F (2008) Non-coding RNAs, epigenetics and complexity. Gene 410:9–17

    Article  CAS  PubMed  Google Scholar 

  • Deans C, Maggert KA (2015) What do you mean, “Epigenetic”? Genetics 199:887–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhar MK, Vishal P, Sharma R et al (2014) Epigenetic dynamics: role of epimarks and underlying machinery in plants exposed to abiotic stress. Int J Genomics 2014:187146

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding Y, From M, Avramova Z (2012) Multiple exposures to drought ‘train’ transcriptional responses in Arabidopsis. Nat Commun 3:740

    Article  PubMed  Google Scholar 

  • Dyachenko O, Zakharchenko N, Shevchuk T et al (2006) Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress. Biochemistry (Moscow) 71:461–465

    Article  CAS  Google Scholar 

  • Ebrahim S (2012) Epigenetics: the next big thing. Int J Epidemiol 41:1–3

    Article  PubMed  Google Scholar 

  • Ephrussi B (1958) The cytoplasm and somatic cell variation. J Cell Comp Physiol 52:35–52

    Article  CAS  Google Scholar 

  • Fan HH, Wei J, Li TH et al (2013) DNA methylation alterations of upland cotton (Gossypium hirsutum) in response to cold stress. Acta Physiolgiae Plantarum 35:2445–2453

    Article  CAS  Google Scholar 

  • Feng Q, Yang C, Lin X et al (2012) Salt and alkaline stress induced transgenerational alteration in DNA methylation of rice (Oryza sativa). Aust J Crop Sci 6:877–883

    CAS  Google Scholar 

  • Filek M, Keskinen R, Hartikainen H et al (2008) The protective role of selenium in rape seedlings subjected to cadmium stress. J Plant Physiol 165:833–844

    Article  CAS  PubMed  Google Scholar 

  • Folsom JJ, Begcy K, Hao X et al (2014) Rice fertilization-independent endosperm1 regulates seed size under heat stress by controlling early endosperm development. Plant Physiol 165:238–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao G, Li J, Li H et al (2014) Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat-sensitive rapeseed seedlings. Breed Sci 64:125–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg R, Chevala VVSN, Shankar R et al (2015) Divergent DNA methylation patterns associated with gene expression in rice cultivars with contrasting drought and salinity stress response. Sci Rep 5:14922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grafi G, Ohad N (eds) (2013) Plant epigenetics: a historical perspective. In: Epigenetic memory and control in plants, signaling and communication in plants. Springer, Berlin, pp 1–19

    Google Scholar 

  • Grant-Downton RT, Dickinson HG (2005) Epigenetics and its implications for plant biology. The epigenetic network in plants. Ann Bot (Lond) 96:1143–1164

    Article  CAS  Google Scholar 

  • Grativol C, Hemerly AS, Ferreira PCG (2012) Genetic and epigenetic regulation of stress responses in natural plant populations. Biochim Biophys Acta 1819:176–185

    Article  CAS  PubMed  Google Scholar 

  • Haig D (2004) The (dual) origin of epigenetics. Cold Spring Harb Symp Quant Biol 69:67–70

    Article  CAS  PubMed  Google Scholar 

  • Hashida SN, Uchiyama T, Martin C et al (2006) The temperature dependent change in methylation of the Antirrhinum transposon Tam3 is controlled by the activity of its transposase. Plant Cell 18:104–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauser M-T, Aufsatz W, Jonak C et al (2011) Transgenerational epigenetic inheritance in plants. Biochim Biophys Acta 1809:459–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holliday R (1994) Epigenetics: an overview. Dev Genet 15:453–457

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Zhang L, Zhao L et al (2011) Trichostatin A selectively suppresses the cold-induced transcription of the ZmDREB1 gene in maize. PLoSONE 6:e22132

    Article  CAS  Google Scholar 

  • Jablonka EVA, Lamb MJ (2002) The changing concept of epigenetics. Ann NY Acad Sci 981:82–96

    Article  PubMed  Google Scholar 

  • Johnson TB, Coghill RD (1925) Researches on pyrimidines. C111. The discovery of 5-methyl cytosine in tuberculinic acid, the nucleic acid of the Tubercle Bacillus. J Am Chem Soc 47:2838–2844

    Article  CAS  Google Scholar 

  • Kaldis A, Tsementzi D, Tanriverdi O et al (2011) Arabidopsis thaliana transcriptional co-activators ADA2b and SGF29a are implicated in salt stress responses. Planta 233:749–762

    Article  CAS  PubMed  Google Scholar 

  • Karan R, DeLeon T, Biradar H et al (2012) Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PLoS ONE 7:e40203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khraiwesh B, Zhu J-K, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148

    Article  CAS  PubMed  Google Scholar 

  • Kim J-M, To TK, Ishida J et al (2008) Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol 49:1580–1588

    Article  CAS  PubMed  Google Scholar 

  • Kim JM, Sasaki T, Ueda M et al (2015) Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Front Plant Sci 6:114

    PubMed  PubMed Central  Google Scholar 

  • Kinoshita T, Seki M (2014) Epigenetic memory for stress response and adaptation in plants. Plant Cell Physiol 55:1859–1863

    Article  CAS  PubMed  Google Scholar 

  • Kovarˇik A, Koukalová B, Bezdeˇk M et al (1997) Hypermethylation of tobacco heterochromatic loci in response to osmotic stress. Theor Appl Genet 95:301–306

    Article  Google Scholar 

  • Kumar SV, Wigge PA (2010) H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140:136–147

    Article  CAS  PubMed  Google Scholar 

  • Labra M, Ghiani A, Citterio S et al (2002) Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biol 4:694–699

    Article  CAS  Google Scholar 

  • Li H, Yan S, Zhao L et al (2014) Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling. BMC Plant Biol 14:105

    Article  PubMed  PubMed Central  Google Scholar 

  • Lira-Medeiros CF, Parisod C, Fernandes RA et al (2010) Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS ONE 5:e10326

    Article  PubMed  PubMed Central  Google Scholar 

  • Lister R, O’Malley RC, Tonti-Filippini J et al (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate-crop yield relationships and the impacts of recent warming. Environ Res Lett 2:1–7

    Article  Google Scholar 

  • Luo M, Liu X, Singh P et al (2012) Chromatin modifications and remodeling in plant abiotic stress responses. Biochim Biophys Acta 1819:129–136

    Article  CAS  PubMed  Google Scholar 

  • March-Díaz R, Reyes JC (2009) The beauty of being a variant: H2A.Z and the SWR1 complex in plants. Mol Plant 2:565–577

    Article  PubMed  Google Scholar 

  • Miller MJ, Barrett-Wilt GA, Hua Z et al (2010) Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis. Proc Natl Acad Sci U S A 107:16512–16517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min L, Li Y, Hu Q et al (2014) Sugar and auxin signaling pathways respond to high-temperature stress during anther development as revealed by transcript profiling analysis in cotton. Plant Physiol 164:1293–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:267–274

    Article  CAS  PubMed  Google Scholar 

  • Molinier J, Ries G, Zipfel C, Hohn B (2006) Transgeneration memory of stress in plants. Nature 442:1046–1049

    Article  CAS  PubMed  Google Scholar 

  • Morange M (2002) The relations between genetics and epigenetics: a historical point of view. Ann NY Acad Sci 981:50–60

    Article  CAS  PubMed  Google Scholar 

  • Naydenov M, Baev V, Apostolova E et al (2015) High-temperature effect on genes engaged in DNA methylation and affected by DNA methylation in Arabidopsis. Plant Physiol Biochem 87:102–108

    Article  CAS  PubMed  Google Scholar 

  • Ou X, Zhang Y, Xu C et al (2012) Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.) PLoS ONE 7:e41143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng H, Zhang J (2009) Plant genomic DNA methylation in response to stresses: Potential applications and challenges in plant breeding. Prog Nat Sci 19:1037–1045

    Article  CAS  Google Scholar 

  • Pikaard CS, Scheid OM (2014) Epigenetic regulation in plants. Cold Spring Harb Perspect Biol 6:a019315

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiao W, Fan L (2011) Epigenetics, a mode for plants to respond to abiotic stresses. Front Biol 6:477–481

    Article  CAS  Google Scholar 

  • Sahu PP, Pandey G, Sharma N et al (2013) Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Rep 32:1151–1159

    Article  CAS  PubMed  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    PubMed  Google Scholar 

  • Shan XH, Wang XY, Yang G et al (2013) Analysis of the DNA methylation of maize (Zea mays L.) in response to cold stress based on methylation-sensitive amplified polymorphisms. J Plant Biol 56:32–38

    Article  CAS  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Sokol A, Kwiatkowska A, Jerzmanowski A et al (2007) Up-regulation of stress-inducible genes in tobacco and Arabidopsis cells in response to abiotic stresses and ABA treatment correlates with dynamic changes in histone H3 and H4 modifications. Planta 227:245–254

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Liu L, Feng Y et al (2015) Chilling- and freezing- induced alterations in cytosine methylation and its association with the cold tolerance of an alpine subnival plant, Chorispora bungeana. PLoS ONE 10:e0135485

    Article  PubMed  PubMed Central  Google Scholar 

  • Speybroeck L (2006) From epigenesis to epigenetics. Ann NY Acad Sci 981:61–81

    Article  Google Scholar 

  • Steward N, Kusano T, Sano H (2000) Expression of ZmMET1, a gene encoding a DNA methyltransferase from maize, is associated not only with DNA replication in actively proliferating cells, but also with altered DNA methylation status in cold-stressed quiescent cells. Nucleic Acids Res 28:3250–3259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steward N, Ito M, Yamaguchi Y et al (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277:37741–37746

    Article  CAS  PubMed  Google Scholar 

  • Stockinger EJ, Mao Y, Regier MK et al (2001) Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in coldregulated gene expression. Nucleic Acids Res 29:1524–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudarsanam P, Winston F (2000) The Swi/Snf family: nucleosome-remodeling complexes and transcriptional control. Trends Genet 16:345–351

    Article  CAS  PubMed  Google Scholar 

  • Suji KK, Joel AJ (2010) An epigenetic change in rice cultivars under water stress conditions. Elect J Plant Breed 1:1142–1143

    Google Scholar 

  • To TK, Nakaminami K, Kim JM et al (2011) Arabidopsis HDA6 is required for freezing tolerance. Biochem Biophys Res Commun 406:414–419

    Article  CAS  PubMed  Google Scholar 

  • Tollefsbol TO (2011) Epigenetics: the new science of genetics, Chapter 1. In: Handbook of epigenetics: the new molecular and medical genetics. Academic Press, San Diego, pp 1–6

    Google Scholar 

  • Tsuji H, Saika H, Tsutsumi N et al (2006) Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice. Plant Cell Physiol 47:995–1003

    Article  CAS  PubMed  Google Scholar 

  • Vanyushin BF (2014) Epigenetics today and tomorrow. Russ J Genet Appl Res 4(3):168–188

    Article  Google Scholar 

  • Vanyushin BF, Ashapkin VV (2011) DNA methylation in higher plants: past, present and future. Biochim Biophys Acta 1809:360–368

    Article  CAS  PubMed  Google Scholar 

  • Vanyushin BF, Belozersky AN (1959) Nucleotide composition of deoxyribonucleic acid in higher plants. Dokl Akad Nauk SSSR 129:944–946

    CAS  Google Scholar 

  • Vanyushin BF, Kadyrova DK, Karimov KK et al (1971) Minor bases in the DNA of higher plants. Biochemistry (Moscow) 36:1251–1258

    CAS  Google Scholar 

  • Vlachonasios KE, Thomashow MF, Triezenberg SJ (2003) Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. Plant Cell 15:626–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waddington CH (1968) The basic ideas of biology. In: Waddington CH (ed) Towards a theoretical biology, Prolegomena, vol 1. Edinburgh University Press, Edinburgh, pp 1–32

    Google Scholar 

  • Wang W, Zhao X, Pan Y et al (2011a) DNA methylation changes detected by methylation-sensitive amplified polymorphism in two contrasting rice genotypes under salt stress. J Genet Genomics 38:419e424

    Google Scholar 

  • Wang WS, Pan YJ, Zhao XQ et al (2011b) Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.) J Exp Bot 62:1951–1960

    Article  CAS  PubMed  Google Scholar 

  • Weinhold B (2006) Epigenetics: the science of change. Environ Health Perspect 114:160–167

    Article  Google Scholar 

  • Weng M, Yang Y, Feng H et al (2014) Histone chaperone ASF1 is involved in gene transcription activation in response to heat stress in Arabidopsis thaliana. Plant Cell Environ 37:2128–2138

    Article  CAS  PubMed  Google Scholar 

  • Wu CT, Morris JR (2001) Genes, genetics, and epigenetics: a correspondence. Science 293:1103–1105

    Article  CAS  Google Scholar 

  • Wyatt GR (1950) Occurrence of 5-methylcytosine in nucleic acids. Nature 166:237–238

    Article  CAS  PubMed  Google Scholar 

  • Yang JL, Liu LW, Gong YQ et al (2007) Analysis of genomic DNA methylation level in radish under cadmium stress by methylation sensitive amplified polymorphism technique. J Plant Physiol Mol Biol 33:219–226

    CAS  Google Scholar 

  • Zemach A, McDaniel IE, Silva P et al (2010) Genome-wide evolutionary analysis of eucaryotic DNA methylation. Science 328:916–919

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang S, Zhang Y et al (2011) Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation. Plant Cell 23:396–411

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Jeong JC, Zhu Y et al (2008) Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proc Natl Acad Sci U S A 105:4945–4950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Authors are thankful to the University Grants Commission and Visva-Bharati for providing all the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolly Basak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bej, S., Basak, J. (2017). Abiotic Stress Induced Epigenetic Modifications in Plants: How Much Do We Know?. In: Rajewsky, N., Jurga, S., Barciszewski, J. (eds) Plant Epigenetics. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-55520-1_24

Download citation

Publish with us

Policies and ethics