Skip to main content

Topological Data Analysis of Critical Transitions in Financial Networks

  • Conference paper
  • First Online:
3rd International Winter School and Conference on Network Science (NetSci-X 2017)

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Included in the following conference series:

Abstract

We develop a topology data analysis-based method to detect early signs for critical transitions in financial data. From the time-series of multiple stock prices, we build time-dependent correlation networks, which exhibit topological structures. We compute the persistent homology associated to these structures in order to track the changes in topology when approaching a critical transition. As a case study, we investigate a portfolio of stocks during a period prior to the US financial crisis of 2007–2008, and show the presence of early signs of the critical transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adler, R.J., Bobrowski, O., Borman, M.S., et al.: Persistent homology for random fields and complexes. Inst. Math. Stat. Collect. 6, 124–143 (2010)

    Article  MathSciNet  Google Scholar 

  2. Berwald, J., Gidea, M.: Critical transitions in a model of a genetic regulatory system. Math. Biol. Eng. 11 (4), 723–740 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berwald, J., Gidea, M., Vejdemo-Johansson, M.: Automatic recognition and tagging of topologically different regimes in dynamical systems. Discontinuity Nonlinearity Complex. 3 (4), 413–426 (2015)

    Article  MATH  Google Scholar 

  4. Carstens, C.J., Horadam, K.J.: Persistent homology of collaboration networks. Math. Probl. Eng. 2013, 1–7 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chazal, F., Cohen-Steiner, D., Guibas, L.J., et al.: Gromov-Hausdorff stable signatures for shapes using persistence. In: Computer Graphics Forum (Proc. SGP 2009), pp. 1393–1403 (2009)

    Google Scholar 

  6. Chazal, F., de Silva, V., Oudot, S.: Persistence stability for geometric complexes. Geom. Dedicata 173, 193–214 (2013). doi:10.1007/s10711-013-9937-z

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen-Steiner, D., Edelsbrunner, H., Harer, J., et al.: Lipschitz functions have L p -stable persistence. Found. Comput. Math. 10, 127–139 (2010). doi:10.1007/s10208-010-9060-6

    Article  MathSciNet  MATH  Google Scholar 

  8. Edelsbrunner, H., Harer, J.: Persistent homology — a survey. In: Goodman, J.E., Pach, J., Pollack, R. (eds.) Surveys on Discrete and Computational Geometry. Twenty Years Later. Contemporary Mathematics, vol. 453, pp. 257–282. American Mathematical Society, Providence, RI (2008)

    Chapter  Google Scholar 

  9. Edelsbrunner, H., Morozov, M.: Persistent homology: theory and practice. In: European Congress of Mathematics, Krakow, 2–7 July 2012, pp. 31–50. European Mathematical Society, Zürich (2012)

    Google Scholar 

  10. Fasy, B.T., Kim, J., Lecci, F., Maria, C.: Introduction to the R package TDA, arXiv:1411.1830 (2014)

    Google Scholar 

  11. Horak, D., Maletic, S., Rajkovic, M.: Persistent homology of complex networks. J. Stat. Mech. Theory Exp. 2009, 1–25 (2009)

    Article  MathSciNet  Google Scholar 

  12. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. Springer, New York (2004)

    Book  MATH  Google Scholar 

  13. Khasawneh, F., Munch, E.: Chatter detection in turning using persistent homology. Mech. Syst. Signal Process. 70–71, 527–541 (2016)

    Article  Google Scholar 

  14. Kramár, M., Levanger, R., Tithof, J., et al.: Analysis of Kolmogorov flow and Rayleigh-Bénard convection using persistent homology. Phys. D Nonlinear Phenom. 334, 82–98 (2016). ISSN 0167-2789, http://dx.doi.org/10.1016/j.physd.2016.02.003

  15. Münnix, M.C., Shimada, T., Schäfer, R., et al.: Identifying states of a financial market. Sci. Rep. 2 (644), 1–6 (2012)

    Google Scholar 

  16. Nicolau, M., Levine, A.J., Carlsson, G.: Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival. Proc. Natl. Acad. Sci. 108 (17), 7265–7270 (2011)

    Article  ADS  Google Scholar 

  17. Nobi, A., Sungmin, L., Kim, D.H., et al.: Correlation and network topologies in global and local stock indices. Phys. Lett. A 378 (34), 2482–2489 (2014)

    Article  ADS  Google Scholar 

  18. Nobi, A., Maeng, S.E., Ha, G.G., et al.: Effects of global financial crisis on network structure in a local stock market. Phys. A Stat. Mech. Appl. 407, 135–143 (2014)

    Article  Google Scholar 

  19. Scheffer, M., Bascompte, J., Brock, W.A., et al.: Early-warning signals for critical transitions. Nature 461 (3), 53–59 (2009)

    Article  ADS  Google Scholar 

  20. Smerlak, M., Stoll, B., Gupta, A., Magdanz, J.S.: Mapping systemic risk: critical degree and failures distribution in financial networks. PLoS ONE 10 (7), e0130948 (2015). doi:10.1371/journal.pone.0130948

    Article  Google Scholar 

Download references

Acknowledgements

Research of Marian Gidea was partially supported by the Alfred P. Sloan Foundation grant G-2016-7320, and by the NSF grant DMS-0635607.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Gidea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gidea, M. (2017). Topological Data Analysis of Critical Transitions in Financial Networks. In: Shmueli, E., Barzel, B., Puzis, R. (eds) 3rd International Winter School and Conference on Network Science . NetSci-X 2017. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-55471-6_5

Download citation

Publish with us

Policies and ethics