Skip to main content

Bioremediation of Sulfide Mine Tailings: Response of Different Soil Fractions

  • Chapter
  • First Online:
Enhancing Cleanup of Environmental Pollutants

Abstract

Bioremediation phenomena of soils contaminated with heavy metals have not been considered a key sustainability issue for the mining industry until recently. At least, this is what can be deduced from the huge amount of mining activities spread out worldwide. Nevertheless, mine wastes accumulated over long periods of time have a negative impact on the landscape and pose serious threats to ecosystems. Far from being solved, this issue is becoming more acute as the metalliferous mining industry is seriously affected by the cutoff grades decline of natural resources. The mining district of Sierra Cartagena-La Unión in southeast Spain, with a total area of 100 km2, is a good example of poor mine practices. Metal extraction (Ag, Pb, and Zn) from sulfide mineral ores in this mining area dates back before Roman times. Consequently, large amounts of mining wastes have been accumulated over the centuries close to human settlements. Facts like this, underestimated in the past, could be a potential source of metal propagation with possible detrimental effects on human health. In this work, a bioremediation study has been accomplished in a metalliferous contaminated soil considering different particle size fractions. Each fraction, including the global material waste, has been chemically characterized using an ad hoc approach, followed by its mineralogical characterization. The investigation has been focused on the effect of bioaugmentation on metal mobilization and redistribution of heavy metals (Zn, Pb, Cu, Fe) among different soil fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Álvarez-Ayuso E, García-Sánchez A, Querol X, Moyano A (2008) Trace element mobility in soils seven years after the Aznalcóllar mine spill. Chemosphere 73:1240–1246

    Article  Google Scholar 

  • Brady P, Spalding B, Krupa K, Waters R, Zhang P, Boms D, Brady W (1999) Site screening and technical guidance for monitored natural attenuation at DOE sites. Sandia report, SAND99-0464, 146 pp

    Google Scholar 

  • Brown GE, Calas G (2011) Environmental mineralogy – understanding element behavior in ecosystems. C R Geosci 343:90–112

    Article  CAS  Google Scholar 

  • Cortez H, Pingarrón J, Muñoz JA, Ballester A, Blázquez ML, González F, García C, Coto O (2010) Bioremediation of soils contaminated with metalliferous mining wastes. Chapter 17. In: Grażyna Płaza (ed) Trends in bioremediation and phytoremediation. Research Signpost, Kerala (India). ISBN: 978–81–308-0424-8. 17 pp

    Google Scholar 

  • Díaz MA, Urdaneta de Ranson I, Dorta B, Banat IM, Blázquez ML, Gónzalez F, Muñoz JA, Ballester A (2015) Metal removal from contaminated soils through bioleaching with oxidizing bacteria and rhamnolipid biosurfactants. Soil Sediment Contam 24:16–29

    Article  Google Scholar 

  • Ellis RJ (2004) Artificial soil microcosms: a tool for studying microbial autecology under controlled conditions. J Microbiol Methods 56:287–290

    Article  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  CAS  Google Scholar 

  • Gelencsér A, Kováts N, Turóczi B, Rostási A, Hoffer A, Imre K, Nyirö-Kósa I, Csákberényi-Malasics D, Tóth A, Czitrovszky A, Nagy A, Nagy S, Ács A, Kovács A, Ferincz A, Hartyáni Z, Pósfai M (2011) The red mud accident in Ajka (Hungary): characterization and potential health effects of fugitive dust. Environ Sci Technol 45:1608–1615

    Article  Google Scholar 

  • Girma G (2015) Microbial bioremediation of some heavy metals in soils: an updated review. Indian J Sci Res 6:147–161

    CAS  Google Scholar 

  • Gleyzes C, Tellier S, Astruc M (2002) Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trends Anal Chem 21:451–467

    Article  CAS  Google Scholar 

  • Gosar M (2004) Environmental impacts of metal mining. Mater Geoenviron 51:2097–2107

    CAS  Google Scholar 

  • http://www.igme.es

  • Johnson DB (2014) Recent developments in microbiological approaches for securing mine wastes and for recovering metals from mine waters. Minerals 4:279–292

    Article  CAS  Google Scholar 

  • Juwarkar A, Singh S, Mudhoo A (2010) A comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol 9:215–288

    Article  CAS  Google Scholar 

  • Kavamura V, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28:61–69

    Article  CAS  Google Scholar 

  • Kang C-H, Kwon Y-J, So J-S (2016) Bioremediation of heavy metals by using bacterial mixtures. Ecol Eng 89:64–69

    Article  Google Scholar 

  • Kelly J, Thornton I, Simpson PR (1996) Urban geochemistry: a study of influence of anthropogenic activity on heavy metal content of soils in traditionally industrial and nonindustrial areas of Britain. Appl Geochem 11:363–370

    Article  CAS  Google Scholar 

  • Lu L, Wang R, Chen F, Xue J, Zhang P, Lu J (2005) Element mobility during pyrite weathering: implications for acid and heavy metal pollution at mining-impacted sites. Environ Geol 49:82–89

    Article  CAS  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    Article  CAS  Google Scholar 

  • Natarajan KA, Subramanian S, Braun J-J (2006) Environmental impact of metal mining: Biotechnological aspects of water pollution and remediation. An Indian experience. J Geochem Explor 88:45–48

    Article  CAS  Google Scholar 

  • Norgate T, Jahanshahi S, Rankin W (2007) Assessing the environmental impact of metal production processes. J Clean Prod 15:838–848

    Article  Google Scholar 

  • Nriagu JO (1990) Global metal pollution – poisoning the biosphere? Environ 32:7–32

    Article  Google Scholar 

  • Olaniran V, Pillay D, Pillay B (2006) Biostimulation and bioaugmentation enhances aerobic biodegradation of dichloroethenes. Chemosphere 63:600–608

    Article  CAS  Google Scholar 

  • Peng J, Song Y, Yuan P, Cui X, Qiu G (2009) The remediation of heavy metals contaminated sediment. J Hazard Mater 161:633–640

    Article  CAS  Google Scholar 

  • Plumb J, Muddle R, Franzmann P (2008) Effect of pH on rates of iron and sulfur oxidation by bioleaching organisms. Miner Eng 21:76–82

    Article  CAS  Google Scholar 

  • Poulton S, Canfield D (2005) Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chem Geol 214:209–221

    Article  CAS  Google Scholar 

  • Prokop G, Schamann M (2000) Management of contaminated sites in Western Europe. European Environment Agency. Topic Report 123/1999

    Google Scholar 

  • Robles-Arenas VM (2007) Caracterización hidrogeológica de la Sierra de Cartagena-La Unión (SE de la Península Ibérica). Impacto de la minería abandonada sobre el medio hídrico. Tesis Doctoral. Universidad Politécnica de Cataluña, p 177

    Google Scholar 

  • Robles-Arenas VM, Rodríguez R, García C, Manteca JI, Candela L (2006) Sulphide-mining impacts in the physical environment: Sierra de Cartagena-La Unión (SE Spain) case study. Environ Geol 51:47–64

    Article  CAS  Google Scholar 

  • Romero F, Armienta M, González-Hernández G (2007) Solid-phase control on the mobility of potentially toxic elements in an abandoned lead/zinc mine tailings impoundment, Taxo, Mexico. Appl Geochem 22:109–127

    Article  CAS  Google Scholar 

  • Salinas-Martínez A, de los Santos-Córdova M, Soto-Cruz O, Delgado E, Pérez-Andrade H, Háuad-Marroquín LA, Medrano-Roldán H (2008) Development of a bioremediation process by biostimulation of native microbial consortium through the heap leaching technique. J Environ Manage 88:115–119

    Article  Google Scholar 

  • Schippers A, Breuker A, Blazejak A, Bosecker K, Kock D, Wright T (2010) The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe(II)-oxidizing bacteria. Hydrometallurgy 104:342–350

    Article  CAS  Google Scholar 

  • Sinha RK, Valani D, Sinha S, Singh S, Herat S (2009) Bioremediation of contaminated sites: a low-cost nature’s biotechnology for environmental cleanup by versatile microbes, plants and earthworms. Chapter 1. In: Faerber T, Herzog J (eds) Solid waste management and environmental remediation. Nova Science Publishers, Inc. New York, ISBN: 978-1-60,741-761-3, p 72

    Google Scholar 

  • Wang S, Mulligan CN (2009) Arsenic mobilization from mine tailings in the presence of a biosurfactant. Appl Geochem 24:928–935

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Muñoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cortez, H., Ballester, A., González, F., Blázquez, M.L., Muñoz, J.A. (2017). Bioremediation of Sulfide Mine Tailings: Response of Different Soil Fractions. In: Anjum, N., Gill, S., Tuteja, N. (eds) Enhancing Cleanup of Environmental Pollutants. Springer, Cham. https://doi.org/10.1007/978-3-319-55426-6_8

Download citation

Publish with us

Policies and ethics