Skip to main content

Recovery from Brain Damage

  • Chapter
  • First Online:
The Broca-Wernicke Doctrine

Abstract

It has been known for ages that some form of spontaneous recovery usually follows a disabling injury. In the past, this was generally attributed to ‘the healing power of nature’ (Hippocrates’ vis naturae medicatrix) or to supernatural forces [1]. Scientific inquires have revealed the nature of many of these recovery processes, and we have learned, to some extent at least, to understand and influence the course of injury and disease. In the case of a fractured bone, for example, physical and physiological processes have been elucidated quite accurately, and several treatments have been developed that facilitate healing of the fracture and recovery of a person’s functionality. But clearly, in many other cases, in particular when there is damage to the brain, restoration of function is often incomplete or insufficient, and we are failing to grasp all the relevant factors that are involved in the process [2, 3]. This chapter reviews neural plasticity from a clinical point of view and specifically focuses on the brain’s potential to reorganize the neural circuitry for language functions at the macroscopical level (i.e. in terms of brain areas and white matter pathways).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Quote taken from The brain that changes itself by Norman Doidge (2007) [29]

  2. 2.

    Quotation taken from Aphasia and Kindred Disorders of Speech by Head (1926) [10]

  3. 3.

    See for other pioneers Tesak and Code’s Milestones in the History of Aphasia [24].

  4. 4.

    Konorski published similar ideas on synaptic plasticity to Donald Hebb, who is usually credited for his rules on learning and the concept of distributed memory [50]. Konorski’s research was suppressed for political reasons, and the impact of his work in the West was therefore probably less than it should have been. According to Markram (2011), his proposals were nevertheless appreciated at an early stage by well-known researchers such as Hebb, Adrian and Eccles [51]. ‘Some researchers prefer to speak of Hebb–Konorski plasticity (…), although the concept of Hebbian plasticity is clearly in wider use’ [51].

  5. 5.

    Maladaptive effects of neural plasticity are, for example, the experience of a phantom limb [35] or dystonia and motor hand weakness in professional musicians [57, 58].

  6. 6.

    Possibilities and pitfalls of functional neuroimaging techniques are extensively discussed in Chap. 8. In short, there are two main issues that put limitations on the use of fMRI: (1) averaging individual results improves statistical power, but will decrease spatial resolution of the group results to 1–2 cm. (2) Functional imaging techniques cannot differentiate between critical and involved language areas. When an area shows up on a brain map, this does not necessarily mean that it is crucially important for language nor that it is even involved in language functions per se. Consequently, the presence of right hemisphere activation does not automatically imply that there is atypical or ‘abnormal’ language organization. This is simply demonstrated by the fact that fMRI maps of healthy subjects invariably show bilateral language-related activation, obviously challenging the clinical dogma that most people have a language-dominant left hemisphere [70, 71].

  7. 7.

    Alternatively, brain plasticity can be studied in single-case studies. Such an approach, however, does not allow for generalization of results or testing of scientific hypotheses and also suffers from the limitations of single-subject fMRI that are mentioned in Chap. 8 [73].

  8. 8.

    The explanation frequently given is that a lesion—via the transcallosal pathways—causes disinhibition of homologue areas in the other hemisphere. This assumes that under normal circumstances, the language-dominant left hemisphere inhibits right hemisphere homologue areas via the transcallosal pathways. Due to a lesion, this inhibition is lost, and there is a reactive increase in the activation of the contralesional homologue area. There is some experimental evidence for this phenomenon (see Fig. 9.4) [80].

  9. 9.

    The abnormal blood vessels of AVMs may disturb the local haemodynamic response and reduce fMRI signals. There is some concern in the literature that this may significantly affect the clinical interpretation of fMRI maps, although studies are not conclusive at this point [88, 114]. In the series of Deng, these local disturbances may have falsely exaggerated right-sided lateralization (pseudo-dominance), but obviously cannot explain the increased fMRI activity in the contralesional hemisphere.

  10. 10.

    Low-grade gliomas are typically present for more than a decade before they become clinically manifest and in the majority of cases debut with a seizure [115]. High-grade gliomas grow much faster, presumably in the order of months, and frequently cause neurological and cognitive deficits.

  11. 11.

    The works of Goldberg, Luria and many others emphasized that there is more to functional recovery than changes in neural architecture and spatiotemporal reorganization of functions. Brain-damaged organisms also retrieve their goals ‘through the employment of novel tactics or unusual behaviors’ [1, 120]. Social support, motivation and a positive rehabilitation environment play an important role.

  12. 12.

    Speech-language therapy is defined as a formal intervention that aims to improve language and communication abilities, activity and participation [125]. Studies have predominantly been conducted with stroke patients.

  13. 13.

    Others have argued against this theory; see, for example, Studdert-Kennedy and Mody (1995) [129] or Snowling (2001) [130].

  14. 14.

    See the book of Schwartz and Begley, The Mind and the Brain (2002) [131].

  15. 15.

    Fast ForWord is a commercially available program; see http://www.scilearnglobal.com/.

  16. 16.

    See for reviews Ren (2014) [137] and Turkeltaub (2015) [82].

  17. 17.

    Relocation of functional areas has, incidentally, also been reported in patients with a tumour in the primary motor cortex after multistage surgery (but without chronic electrical stimulation) [139, 140].

References

  1. Levin HS, Grafman J. Cerebral reorganization of function after brain damage. Oxford: Oxford University Press; 2000.

    Google Scholar 

  2. Finniss DG, Kaptchuk TJ, Miller F, Benedetti F. Biological, clinical, and ethical advances of placebo effects. Lancet. 2010;375:686–95.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Logan AC, Selhub EM. Vis Medicatrix naturae: does nature “minister to the mind”? Biopsychosoc Med. 2012;6:11.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Finger S, editor. Recovery from brain damage. Research and theory. New York: Plenum Press; 1978.

    Google Scholar 

  5. Ades HW, Raab DH. Recovery of motor function after two-stage extirpation of area 4 in monkeys. J Neurophysiol. 1946;9:55–60.

    Google Scholar 

  6. Travis AM, Woolsey CN. Motor performance of monkeys after bilateral partial and total cerebral decortications. Am J Phys Med. 1956;35:273–310.

    CAS  PubMed  Google Scholar 

  7. Dufau H. Plasticity of cognition in brain gliomas. In: Tracy JI, Hampstead BM, Sathian K, editors. Cognitive plasticity in neurologic disorders. New York: Oxford University Press; 2015. p. 125–51.

    Google Scholar 

  8. Southwell DG, Hervey-Jumper SL, Perry DW, Berger MS. Intraoperative mapping during repeat awake craniotomy reveals the functional plasticity of adult cortex. J Neurosurg. 2016;124:1460–9.

    Article  PubMed  Google Scholar 

  9. Anderson SW, Damasio H, Tranel D. Neuropsychological impairments associated with lesions caused by tumor or stroke. Arch Neurol. 1990;47:397–405.

    Article  CAS  PubMed  Google Scholar 

  10. Head H. Aphasia and kindred disorders of speech. Cambridge: Cambridge University Press; 1926.

    Google Scholar 

  11. Bates E, Roe K. Language development in children with unilateral brain injury. In: Nelson CA, Luciana M, editors. Handbook of developmental cognitive neuroscience. Cambridge: MIT Press; 2001. p. 281.

    Google Scholar 

  12. Coppens P, Lebrun Y, Basso A. Aphasia in atypical populations. New York: Psychology Press; 1998.

    Google Scholar 

  13. Paquier PF, Van Dongen HR. Is acquired childhood aphasia atypical. In: Coppens P, Lebrun Y, Basso A, editors. Aphasia in atypical populations. Cambridge: Cambridge University Press; 1998. p. 67–117.

    Google Scholar 

  14. Vanlancker-Sidtis D. When only the right hemisphere is left: studies in language and communication. Brain Lang. 2004;91:199–211.

    Article  CAS  PubMed  Google Scholar 

  15. Basser LS. Hemiplegia of early onset and the faculty of speech with special reference to the effects of hemispherectomy. Brain. 1962;85:427–60.

    Article  CAS  PubMed  Google Scholar 

  16. Wilson PJ. Cerebral hemispherectomy for infantile hemiplegia. A report of 50 cases. Brain. 1970;93:147–80.

    Article  CAS  PubMed  Google Scholar 

  17. Deacon W. The symbolic species: the co-evolution of language and the brain. New York: WW Norton & Company; 1997.

    Google Scholar 

  18. Chilosi AM, Cipriani P, Pecini C, et al. Acquired focal brain lesions in childhood: effects on development and reorganization of language. Brain Lang. 2008;106:211–25.

    Article  CAS  PubMed  Google Scholar 

  19. Bishop DV. Cerebral asymmetry and language development: cause, correlate, or consequence? Science. 2013;340:1230531.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Minagawa-Kawai Y, Cristia A, Dupoux E. Cerebral lateralization and early speech acquisition: a developmental scenario. Dev Cogn Neurosci. 2011;1:217–32.

    Article  PubMed  Google Scholar 

  21. Annett M. Left, right, hand and brain: the right shift theory. New York: Psychology Press; 1985.

    Google Scholar 

  22. Ballantyne AO, Spilkin AM, Trauner DA. Language outcome after perinatal stroke: does side matter. Child Neuropsychol. 2007;13:494–509.

    Article  PubMed  Google Scholar 

  23. Brown JW. The life of the mind. Hillsdale: Lawrence Erlbaum Associates; 1988.

    Google Scholar 

  24. Tesak J, Code C. Milestones in the history of aphasia: theories and protagonists. Hove: Psychology Press; 2008.

    Google Scholar 

  25. Finger S, Beyer T, Koehler PJ. Dr. Otto Soltmann (1876) on development of the motor cortex and recovery after its removal in infancy. Brain Res Bull. 2000;53:133–40.

    Article  CAS  PubMed  Google Scholar 

  26. Connolly KJ, Forssberg H. Neurophysiology and neuropsychology of motor development. New York: Cambridge University Press; 1997.

    Google Scholar 

  27. Ogden R, Franz SI. On cerebral motor control: the recovery from experimentally produced hemiplegia. Psychobiology. 1917;1:33.

    Article  Google Scholar 

  28. Darling WG, Pizzimenti MA, Morecraft RJ. Functional recovery following motor cortex lesions in non-human primates: experimental implications for human stroke patients. J Integr Neurosci. 2011;10:353–84.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Doidge N. The brain that changes itself: stories of personal triumph from the frontiers of brain science. Penguin; 2007.

    Google Scholar 

  30. Taub E, Uswatte G, Elbert T. New treatments in neurorehabilitation founded on basic research. Nat Rev Neurosci. 2002;3:228–36.

    Article  CAS  PubMed  Google Scholar 

  31. Kaas JH. Plasticity of sensory and motor maps in adult mammals. Annu Rev Neurosci. 1991;14:137–67.

    Article  CAS  PubMed  Google Scholar 

  32. Merzenich MM, Kaas JH, Wall J, et al. Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation. Neuroscience. 1983;8:33–55.

    Google Scholar 

  33. Merzenich MM, Nelson RJ, Stryker MP, et al. Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol. 1984;224:591–605.

    Article  CAS  PubMed  Google Scholar 

  34. Pons TP, Garraghty PE, Ommaya AK, et al. Massive cortical reorganization after sensory deafferentation in adult macaques. Science. 1991;252:1857–60.

    Article  CAS  PubMed  Google Scholar 

  35. Ramachandran VS, Hirstein W. The perception of phantom limbs. The D. O. Hebb lecture. Brain. 1998;121:1603–30.

    Google Scholar 

  36. Pascual-Leone A, Cammarota A, Wassermann EM, et al. Modulation of motor cortical outputs to the reading hand of braille readers. Ann Neurol. 1993;34:33–7.

    Article  CAS  PubMed  Google Scholar 

  37. Gilbert CD, Sigman M, Crist RE. The neural basis of perceptual learning. Neuron. 2001;31:681–97.

    Article  CAS  PubMed  Google Scholar 

  38. Xerri C. Experience-dependent reorganization of somatosensory and motor cortical areas: towards a neurobiology of rehabilitation. In: Duffau H, editor. Brain mapping: from neural basis of cognition to surgical applications. Wien: Springer; 2011. p. 111–29.

    Chapter  Google Scholar 

  39. Roe AW, Pallas SL, Hahm JO, Sur M. A map of visual space induced in primary auditory cortex. Science. 1990;250:818–20.

    Article  CAS  PubMed  Google Scholar 

  40. O’Leary DD, Stanfield BB. Selective elimination of axons extended by developing cortical neurons is dependent on regional locale: experiments utilizing fetal cortical transplants. J Neurosci. 1989;9:2230–46.

    PubMed  Google Scholar 

  41. Hubel DH, Wiesel TN. Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B Biol Sci. 1977;198:1–59.

    Article  CAS  PubMed  Google Scholar 

  42. York GK, Steinberg DA. Hughlings Jackson’s theory of recovery. Neurology. 1995;45:834–8.

    Article  CAS  PubMed  Google Scholar 

  43. Finger S, Koehler PJ, Jagella C. The Monakow concept of diaschisis: origins and perspectives. Arch Neurol. 2004;61:283–8.

    Article  PubMed  Google Scholar 

  44. von Monakow C. Die Lokalisation im Grosshirn und der Abbau der Funktion durch Kortikale Herde. Wiesbaden, Germany: JF Bergmann; 1914.

    Google Scholar 

  45. York GK. Localization of language function in the twentieth century. J Hist Neurosci. 2009;18:283–90.

    Article  PubMed  Google Scholar 

  46. Geschwind N. Wernicke’s contribution to the study of aphasia. Cortex. 1967;3:449–63.

    Article  Google Scholar 

  47. Goldstein K. The organism: a holistic approach to biology derived from pathological data in man; 1934.

    Google Scholar 

  48. Goldstein K. Aftereffects of brain injuries in war: their evaluation and treatment. The application of psychologic methods in the clinic; 1942.

    Google Scholar 

  49. Luria AR. Traumatic aphasia: Its syndromes, psychology and treatment. Berlin: Walter De Gruyter; 1970.

    Book  Google Scholar 

  50. Hebb DO. The organization of behavior: a neuropsychological theory. New York: Wiley; 1949.

    Google Scholar 

  51. Markram H, Gerstner W, Sjöström PJ. A history of spike-timing-dependent plasticity. Front Synaptic Neurosci. 2011;3:4.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lövdén M, Bäckman L, Lindenberger U, et al. A theoretical framework for the study of adult cognitive plasticity. Psychol Bull. 2010;136:659–76.

    Article  PubMed  Google Scholar 

  53. Grafman J, Christen Y. Neuronal plasticity: building a bridge from the laboratory to the clinic. Berlin: Springer; 1999.

    Book  Google Scholar 

  54. Rijntjes M, Weiller C. Recovery of motor and language abilities after stroke: the contribution of functional imaging. Prog Neurobiol. 2002;66:109–22.

    Article  PubMed  Google Scholar 

  55. Fields RD, Stevens-Graham B. New insights into neuron-glia communication. Science. 2002;298:556–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cicchetti D, Curtis JW, Mikl M, et al. The developing brain and neural plasticity: implications for normality, psychopathology, vol. 2. New York: Wiley; 2006. p. 1.

    Google Scholar 

  57. Bavelier D, Green CS, Dye MWG. Exercising your brain: training-related brain plasticity. In: Gazzaniga MS, editor. The cognitive neurosciences. Cambridge: MIT Press; 2009. p. 153–64.

    Google Scholar 

  58. Classen J. Focal hand dystonia—a disorder of neuroplasticity. Brain. 2003;126:2571–2.

    Article  PubMed  Google Scholar 

  59. Overgaard M, Mogensen J. A framework for the study of multiple realizations: the importance of levels of analysis. Front Psychol. 2011;2

    Google Scholar 

  60. Goltz F. Über die verrichtungen des grosshirns. Pfluegers Archiv fuer die Gesamte Physiologie. 1888;42:419–67.

    Google Scholar 

  61. Lashley KS. Brain mechanisms and intelligence. A quantitative study of injuries to the brain. Chicago: University of Chicago Press; 1929.

    Book  Google Scholar 

  62. Gowers WR. Lectures in the diagnosis of diseases of the brain. Philadelphia: Blakiston; 1887.

    Google Scholar 

  63. Barlow T. On a case of double hemiplegia, with cerebral symmetrical lesions. Br Med J. 1877;2:103–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Finger S, Buckner RL, Buckingham H. Does the right hemisphere take over after damage to Broca’s area? the Barlow case of 1877 and its history. Brain Lang. 2003;85:385–95.

    Article  PubMed  Google Scholar 

  65. Hellal P, Lorch MP. The validity of Barlow’s 1877 case of acquired childhood aphasia: case notes versus published reports. J Hist Neurosci. 2007;16:378–94.

    Article  PubMed  Google Scholar 

  66. Finger S. Origins of neuroscience: a history of explorations into brain function. New York: Oxford University Press; 2001.

    Google Scholar 

  67. Broca P. Sur le siège de la faculté du langage articulé. Bull Soc Anthropol. 1865;6:337–93.

    Google Scholar 

  68. Code C. Language, aphasia and the right hemisphere. New York: Wiley; 1987.

    Google Scholar 

  69. Basso A, Gardelli M, Grassi MP, Mariotti M. The role of the right hemisphere in recovery from aphasia. Two case studies. Cortex. 1989;25:555–66.

    Article  CAS  PubMed  Google Scholar 

  70. Springer JA, Binder JR, Hammeke TA, et al. Language dominance in neurologically normal and epilepsy subjects: a functional MRI study. Brain. 1999;122:2033–46.

    Article  PubMed  Google Scholar 

  71. Baron JC, Cohen LG, Cramer SC, et al. Neuroimaging in stroke recovery: a position paper from the First International Workshop on Neuroimaging and Stroke Recovery. Cerebrovasc Dis. 2004;18:260–7.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Janecek JK, Swanson SJ, Sabsevitz DS, et al. Naming outcome prediction in patients with discordant Wada and fMRI language lateralization. Epilepsy Behav. 2013;27:399–403.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Halai AD, Woollams AM, Lambon Ralph MA. Using principal component analysis to capture individual differences within a unified neuropsychological model of chronic post-stroke aphasia: revealing the unique neural correlates of speech fluency, phonology and semantics. Cortex. 2017;86:275–89.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Thompson CK, den Ouden DB. Neuroimaging and recovery of language in aphasia. Curr Neurol Neurosci Rep. 2008;8:475–83.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Weiller C, Isensee C, Rijntjes M, et al. Recovery from Wernicke’s aphasia: a positron emission tomographic study. Ann Neurol. 1995;37:723–32.

    Article  CAS  PubMed  Google Scholar 

  76. Thulborn KR, Carpenter PA, Just MA. Plasticity of language-related brain function during recovery from stroke. Stroke. 1999;30:749–54.

    Article  CAS  PubMed  Google Scholar 

  77. Thiel A, Herholz K, Koyuncu A, et al. Plasticity of language networks in patients with brain tumors: a positron emission tomography activation study. Ann Neurol. 2001;50:629.

    Article  Google Scholar 

  78. Perani D, Cappa SF, Tettamanti M, et al. A fMRI study of word retrieval in aphasia. Brain Lang. 2003;85:357–68.

    Article  CAS  PubMed  Google Scholar 

  79. Cao Y, Vikingstad EM, George KP, et al. Cortical language activation in stroke patients recovering from aphasia with functional MRI. Stroke. 1999;30:2331–40.

    Article  CAS  PubMed  Google Scholar 

  80. Thiel A, Schumacher B, Wienhard K, et al. Direct demonstration of transcallosal disinhibition in language networks. J Cereb Blood Flow Metab. 2006;26:1122–7.

    Article  PubMed  Google Scholar 

  81. Szaflarski JP, Allendorfer JB, Banks C, et al. Recovered vs. not-recovered from post-stroke aphasia: the contributions from the dominant and non-dominant hemispheres. Restor Neurol Neurosci. 2013;31:347–60.

    PubMed  PubMed Central  Google Scholar 

  82. Turkeltaub PE. Brain stimulation and the role of the right hemisphere in aphasia recovery. Curr Neurol Neurosci Rep. 2015;15:72.

    Article  PubMed  Google Scholar 

  83. Winhuisen L, Thiel A, Schumacher B, et al. Role of the contralateral inferior frontal gyrus in recovery of language function in poststroke aphasia: a combined repetitive transcranial magnetic stimulation and positron emission tomography study. Stroke. 2005;36:1759–63.

    Article  PubMed  Google Scholar 

  84. Winhuisen L, Thiel A, Schumacher B, et al. The right inferior frontal gyrus and poststroke aphasia: a follow-up investigation. Stroke. 2007;38:1286–92.

    Article  PubMed  Google Scholar 

  85. Szaflarski JP, Allendorfer JB, Byars AW, et al. Age at stroke determines post-stroke language lateralization. Restor Neurol Neurosci. 2014;32:733–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Duffau H. Brain plasticity and tumors. Adv Tech Stand Neurosurg. 2008;33:3–33.

    Article  CAS  PubMed  Google Scholar 

  87. Thiel A, Habedank B, Herholz K, et al. From the left to the right: how the brain compensates progressive loss of language function. Brain Lang. 2006;98:57–65.

    Article  PubMed  Google Scholar 

  88. Ulmer JL, Hacein-Bey L, Mathews VP, et al. Lesion-induced pseudo-dominance at functional magnetic resonance imaging: implications for preoperative assessments. Neurosurgery. 2004;55:569–81.

    Article  PubMed  Google Scholar 

  89. Lehericy S, Biondi A, Sourour N, et al. Arteriovenous brain malformations: is functional MR imaging reliable for studying language reorganization in patients? Initial observations. Radiology. 2002;223:672–82.

    Article  PubMed  Google Scholar 

  90. Mah YH, Husain M, Rees G, Nachev P. Human brain lesion-deficit inference remapped. Brain. 2014;137(Pt 9):2522–31.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Rutten GJ, Ramsey NF. The role of functional magnetic resonance imaging in brain surgery. Neurosurg Focus. 2010;28:E4.

    Article  PubMed  Google Scholar 

  92. Pedersen PM, Jorgensen HS, Nakayama H, et al. Aphasia in acute stroke: incidence, determinants, and recovery. Ann Neurol. 1995;38:659–66.

    Article  CAS  PubMed  Google Scholar 

  93. Laska AC, Kahan T, Hellblom A, et al. A randomized controlled trial on very early speech and language therapy in acute stroke patients with aphasia. Cerebrovasc Dis Extra. 2011;1:66–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dijkerman HC, Wood VA, Hewer RL. Long-term outcome after discharge from a stroke rehabilitation unit. J R Coll Physicians Lond. 1996;30:538–46.

    CAS  PubMed  Google Scholar 

  95. Furlan M, Marchal G, Viader F, et al. Spontaneous neurological recovery after stroke and the fate of the ischemic penumbra. Ann Neurol. 1996;40:216–26.

    Article  CAS  PubMed  Google Scholar 

  96. Saur D, Lange R, Baumgaertner A, et al. Dynamics of language reorganization after stroke. Brain. 2006;129:1371–84.

    Article  PubMed  Google Scholar 

  97. Warburton E, Price CJ, Swinburn K, Wise RJ. Mechanisms of recovery from aphasia: evidence from positron emission tomography studies. J Neurol Neurosurg Psychiatry. 1999;66:155–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Robson H, Zahn R, Keidel JL, et al. The anterior temporal lobes support residual comprehension in Wernicke’s aphasia. Brain. 2014;137:931–43.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Xing S, Lacey EH, Skipper-Kallal LM, et al. Right hemisphere grey matter structure and language outcomes in chronic left hemisphere stroke. Brain. 2016;139:227–41.

    Article  PubMed  Google Scholar 

  100. Raja Beharelle A, Dick AS, Josse G, et al. Left hemisphere regions are critical for language in the face of early left focal brain injury. Brain. 2010;133:1707–16.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Szaflarski JP, Holland SK, Schmithorst VJ, Byars AW. fMRI study of language lateralization in children and adults. Hum Brain Mapp. 2006;27:202–12.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lidzba K, Staudt M. Development and (re)organization of language after early brain lesions: capacities and limitation of early brain plasticity. Brain Lang. 2008;106:165–6.

    Article  PubMed  Google Scholar 

  103. Tillema JM, Byars AW, Jacola LM, et al. Cortical reorganization of language functioning following perinatal left MCA stroke. Brain Lang. 2008;105:99–111.

    Article  PubMed  Google Scholar 

  104. Liegois F, Connelly A, Helen CJ, et al. Language reorganization in children with early onset lesions of the left hemisphere: an fMRI study. Brain. 2004;127:1229–36.

    Article  Google Scholar 

  105. Vargha-Khadem F, Isaacs EB, Papaleloudi H, et al. Development of language in six hemispherectomized patients. Brain. 1991;114:473–95.

    Article  PubMed  Google Scholar 

  106. Trudeau N, Colozzo P, Sylvestre V, Ska B. Language following functional left hemispherectomy in a bilingual teenager. Brain Cogn. 2003;53:384–8.

    Article  PubMed  Google Scholar 

  107. Forkel SJ, Thiebaut de Schotten M, Dell’Acqua F, et al. Anatomical predictors of aphasia recovery: a tractography study of bilateral perisylvian language networks. Brain. 2014;137:2027–39.

    Article  PubMed  Google Scholar 

  108. Pani E, Zheng X, Wang J, et al. Right hemisphere structures predict poststroke speech fluency. Neurology. 2016;86(17):1574–81.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Hart MG, Price SJ, Suckling J. Connectome analysis for pre-operative brain mapping in neurosurgery. Br J Neurosurg. 2016;30:506–17.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ding D, Starke RM, Liu KC, Crowley RW. Cortical plasticity in patients with cerebral arteriovenous malformations. J Clin Neurosci. 2015;22:1857–61.

    Article  PubMed  Google Scholar 

  111. Duffau H. Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol. 2005;4:476–86.

    Article  PubMed  Google Scholar 

  112. Deng X, Zhang Y, Xu L, et al. Comparison of language cortex reorganization patterns between cerebral arteriovenous malformations and gliomas: a functional MRI study. J Neurosurg. 2015;122(5):996–1003.

    Article  PubMed  Google Scholar 

  113. Liu Z, Deng X, Cao Y et al. Does right-sided language lateralization on BOLD-fMRI affect postoperative language outcome for AVM patients. Turk Neurosurg. 2016.

    Google Scholar 

  114. Pouratian N, Bookheimer SY, Rex DE, et al. Utility of preoperative functional magnetic resonance imaging for identifying language cortices in patients with vascular malformations. J Neurosurg. 2002;97:21–32.

    Article  PubMed  Google Scholar 

  115. Pallud J, Capelle L, Taillandier L, et al. The silent phase of diffuse low-grade gliomas. Is it when we missed the action. Acta Neurochir. 2013;155:2237–42.

    Article  PubMed  Google Scholar 

  116. Thiel A, Habedank B, Winhuisen L, et al. Essential language function of the right hemisphere in brain tumor patients. Ann Neurol. 2005;57:128–31.

    Article  PubMed  Google Scholar 

  117. Kristo G, Raemaekers M, Rutten GJ, et al. Inter-hemispheric language functional reorganization in low-grade glioma patients after tumour surgery. Cortex. 2015;64:235–48.

    Article  PubMed  Google Scholar 

  118. Benzagmout M, Gatignol P, Duffau H. Resection of World Health Organization Grade II gliomas involving Broca’s area: methodological and functional considerations. Neurosurgery. 2007;61:741–52.

    Article  PubMed  Google Scholar 

  119. Goldstein K. Language and language disturbances. Aphasic symptoms complexes and their significance for medicine and theory of language. New York: Grune and Stratton; 1948.

    Google Scholar 

  120. Laurence S, Stein DG. Recovery of brain damage and the concept of localization of function. In: Finger S, editor. Recovery from brain damage. Research and theory. New York: Plenum Press; 1978. p. 369–407.

    Chapter  Google Scholar 

  121. Nadeau SE. Neuroplastic mechanisms of language recovery after stroke. In: Tracy JI, Hampstead BM, Sathian K, editors. Cognitive plasticity in neurological disorders. New York: Oxford University Press; 2015. p. 61–84.

    Google Scholar 

  122. Papagno C, Vallar G. A plastic brain for a changing environment. Cortex. 2014;58:248–50.

    Article  PubMed  Google Scholar 

  123. Pascual-Leone A, Amedi A, Fregni F, Merabet LB. The plastic human brain cortex. Annu Rev Neurosci. 2005;28:377–401.

    Article  CAS  PubMed  Google Scholar 

  124. Doraiswamy PM, Agronin ME. Brain games: do they really work? Sci Am. 2009.

    Google Scholar 

  125. Brady MC, Kelly H, Godwin J, et al. Speech and language therapy for aphasia following stroke. Cochrane Database Syst Rev. 2016;6:CD000425.

    Google Scholar 

  126. Cappa SF, Benke T, Clarke S, et al. EFNS guidelines on cognitive rehabilitation: report of an EFNS task force. Eur J Neurol. 2005;12:665–80.

    Article  CAS  PubMed  Google Scholar 

  127. Greener J, Enderby P, Whurr R. Speech and language therapy for aphasia following stroke. Cochrane Database Syst Rev. 2000: CD000425.

    Google Scholar 

  128. Bowen A, Hesketh A, Patchick E, et al. Effectiveness of enhanced communication therapy in the first four months after stroke for aphasia and dysarthria: a randomised controlled trial. BMJ. 2012;345:e4407.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Studdert-Kennedy M, Mody M. Auditory temporal perception deficits in the reading-impaired: a critical review of the evidence. Psychon Bull Rev. 1995;2:508–14.

    Article  CAS  PubMed  Google Scholar 

  130. Snowling MJ. From language to reading and dyslexia. Dyslexia. 2001;7:37–46.

    Article  CAS  PubMed  Google Scholar 

  131. Schwartz JM, Begley S. The mind and the brain. 2002.

    Google Scholar 

  132. Merzenich MM, Jenkins WM, Johnston P, et al. Temporal processing deficits of language-learning impaired children ameliorated by training. Science. 1996;271:77–81.

    Article  CAS  PubMed  Google Scholar 

  133. Tallal P, Miller SL, Bedi G, et al. Language comprehension in language-learning impaired children improved with acoustically modified speech. Science. 1996;271:81–4.

    Article  CAS  PubMed  Google Scholar 

  134. Temple E, Deutsch GK, Poldrack RA, et al. Neural deficits in children with dyslexia ameliorated by behavioral remediation: evidence from functional MRI. Proc Natl Acad Sci U S A. 2003;100:2860–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Naeser MA, Martin PI, Nicholas M, et al. Improved picture naming in chronic aphasia after TMS to part of right Broca’s area: an open-protocol study. Brain Lang. 2005;93:95–105.

    Article  PubMed  Google Scholar 

  136. Naeser MA, Martin PI, Ho M, et al. Transcranial magnetic stimulation and aphasia rehabilitation. Arch Phys Med Rehabil. 2012;93:S26–34.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Ren CL, Zhang GF, Xia N, et al. Effect of low-frequency rTMS on aphasia in stroke patients: a meta-analysis of randomized controlled trials. PLoS One. 2014;9:e102557.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Barcia JA, Sanz A, Balugo P, et al. High-frequency cortical subdural stimulation enhanced plasticity in surgery of a tumor in Broca’s area. Neuroreport. 2012;23:304–9.

    Article  PubMed  Google Scholar 

  139. Takahashi S, Jussen D, Vajkoczy P, Picht T. Plastic relocation of motor cortex in a patient with LGG (low grade glioma) confirmed by NBS (navigated brain stimulation). Acta Neurochir. 2012;154:2003–8.

    Article  PubMed  Google Scholar 

  140. Duffau H, Capelle L, Denvil D, et al. Functional recovery after surgical resection of low grade gliomas in eloquent brain: hypothesis of brain compensation. J Neurol Neurosurg Psychiatry. 2003;74:901–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Rutten GJ, Ramsey NF, van Rijen PC, et al. fMRI-determined language lateralization in patients with unilateral or bilateral language dominance according to the Wada test. Neuroimage. 2002;17:447–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rutten, GJ. (2017). Recovery from Brain Damage. In: The Broca-Wernicke Doctrine. Springer, Cham. https://doi.org/10.1007/978-3-319-54633-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54633-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54632-2

  • Online ISBN: 978-3-319-54633-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics