Skip to main content

Introduction to Fractional-Order Elements and Devices

  • Chapter
  • First Online:
Fractional-Order Devices

Abstract

We introduce the motivation for the development of fractional-order elements (FOE) and fractional-order devices (FOD) derived from them. Short introductions to some of the material science and engineering applications are presented along with an introduction into the fractional calculus which has proven to be highly effective in modeling complex systems. We explore the questions of “why power–law” and “how is it useful”? Finally we introduce the concept of a fractional-order device and how it can be included in an electronic control circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment and Applications, 2nd edn. (Wiley, Hoboken, New Jersey, 2005)

    Book  Google Scholar 

  2. H. Bode, Network Analysis and Feedback Amplier Design (Van Nostrand, New York, 1945)

    Google Scholar 

  3. G.W. Bohannan, in Application of fractional calculus to polarization dynamics in solid dielectric materials. Ph.D. Thesis, Montana State University—Bozeman (2000)

    Google Scholar 

  4. G.W. Bohannan, Analog realization of a fractional controller, revisited, in Tutorial Workshop 2: Fractional Calculus Applications in Automatic Control and Robotics, Las Vegas, USA, ed. by B.M. Vinagre, Y.Q. Chen (2002), pp. 175–182

    Google Scholar 

  5. G.W. Bohannan, Analog fractional order controller in temperature and motor control applications. J. Vibr. Control 14(9–10), 1487–1498 (2008)

    Article  MathSciNet  Google Scholar 

  6. R. Caponetto, D. Porto, Analog implementation of non integer order integrator via eld programmable analog array, in FDA’06: Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and its Applications, Porto, Portugal (2006), pp. 170–173

    Google Scholar 

  7. G.E. Carlson, C.A. Halijak, Simulation of the fractional derivative operator \(\sqrt{s}\) and the fractional integral operator \(1/\sqrt{s}\), in Central States Simulation Council Meeting on Extrapolation of Analog Computation Methods, Kansas State University, vol. 45, no. 7 (1961), pp. 1–22

    Google Scholar 

  8. Y.-Q. Chen, K.L. Moore, Discretization schemes for fractional–order differentiators and integrators. IEEE Trans. Circuits Syst.–I: Fund. Theory Appl. 49(3), 363–367 (2002)

    Google Scholar 

  9. Y.-Q. Chen, B.M. Vinagre, I. Podlubny, Continued fraction expansion approaches to discretizing fractional order derivatives-an expository review. Nonlinear Dyn. 38, 155–170 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Y.Q. Chen, Tuning methods for fractional–order controllers, U.S. Patent 7,599,752

    Google Scholar 

  11. K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics, J. Chem. Phys. 9, 341–351 (1941)

    Google Scholar 

  12. P. Debye, Polar Molecules (Chemical Catalogue Company, New York, 1929)

    MATH  Google Scholar 

  13. W. Feller, An Introduction to Probability Theory and Its Applications, vol. II (Wiley, New York, 1966)

    Google Scholar 

  14. M. Filoche, M. Sapoval, Transfer across random versus deterministic interfaces. Phys. Rev. Let. 84(25), 5776–5779 (2000)

    Article  Google Scholar 

  15. P. Grigolini, A. Rocco, B.J. West, Fractional calculus as a macroscopic manifestation of randomness. Phys. Rev. E. 59(3), 2603–2613 (1999)

    Article  Google Scholar 

  16. A. Janicki, A. Weron, Simulation and Chaotic Behavior of \(\alpha \)-Stable Stochastic Processes (Dekker, New York, 1994)

    Google Scholar 

  17. A.K. Jonscher, The “universal” dielectric response. Nature 267, 673–679 (1977)

    Article  Google Scholar 

  18. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983)

    Google Scholar 

  19. S. Manabe, The non-integer integral and its application to control systems. Jpn. Inst. Electr. Eng. J. 80(860), 589–597 (1960)

    Google Scholar 

  20. T. Nonnenmacher, W. Glöckle, A fractional model for mechanical stress relaxation. Phil. Mag. Lett. 64(2), 89–93 (1991)

    Article  Google Scholar 

  21. K. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order (Academic Press, New York, 1974)

    MATH  Google Scholar 

  22. A. Oustaloup, B. Mathieu, P. Lannusse, The CRONE control of resonant plants: application to a fexible transmission. Eur. J. Control 1(2) (1995)

    Google Scholar 

  23. A. Oustaloup, P. Lanusse, P. Melchior, X. Moreau, J. Sabatier, J.L. Thomas, A survey of the CRONE approach, in Conference Proceedings 1st IFAC Workshop on Fractional Differentiation and its Applications FDA04, (2 part) (2004)

    Google Scholar 

  24. C.M.A. Pinto, A.M. Lopes, J.A. Tenreiro Machado, A review of power laws in real life phenomena, Commun. Nonlinear Sci. Numer. Simulat. 17(9), 3558–3578 (2012)

    Google Scholar 

  25. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, Mathematics in Science and Engineering, vol. 198 (Academic Press, San Diego, CA, 1999)

    Google Scholar 

  26. I. Podlubny, I. Petráš, B.M. Vinagre, P. O’Leary, L. Dorc̆ák, Analog realizations of fractional-order controllers, Nonlinear Dyn. 29, 281–296 (2002)

    Google Scholar 

  27. J. Sabatier, M. Merveillaut, R. Malti, A. Oustaloup, How to impose physically coherent initial conditions to a fractional system? Commun. Nonlinear Sci. Numer. Simul. 15, 1318–1326 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Sakurai, Modern Quantum Mechanics, Revised edn. (Supplement II, Addison-Wessley, Reading, PA, 1994)

    Google Scholar 

  29. H.V. Schmidt, J.E. Drumheller, Dielectric properties of lithium hydrazinium sulfate. Phys. Rev. B. 4(12), 4582–4597 (1971)

    Article  Google Scholar 

  30. J.A. Tenreiro Machado, Theory of fractional integrals and derivatives: application to motion control, in ICRAM95—IEEE/IFAC/ASME/JSME International Conference on Recent Advances in Mechatronics, 14–16 Aug 1995, Istanbul, Turkey (1995), pp. 1086–1091

    Google Scholar 

  31. J.A. Tenreiro Machado, Analysis and design of fractional-order digital control systems, Syst. Anal. Model. Simul. 27(2–3), 107–122 (1997)

    Google Scholar 

  32. J.A. Tenreiro Machado, Fractional-order derivative approximations in discrete-time control systems, Syst. Anal. Model. Simul. 34, 419–434 (1999)

    Google Scholar 

  33. J.A. Tenreiro Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. Elsevier, 16(3), 1140–1153 (2011)

    Google Scholar 

  34. J.A. Tenreiro Machado, Shannon Information and Power Law Analysis of the Chromosome Code, Abstract and Applied Analysis, Hindawi, vol. 2012, Article ID 439089, (13 pp.) (2012)

    Google Scholar 

  35. J.A. Tenreiro Machado, C.M.A. Pinto, A.M. Lopes, A review on the characterization of signals and systems by power law distributions. Signal Process. 107, 246–253 (2015)

    Google Scholar 

  36. J.A. Tenreiro Machado, Matrix fractional systems. Commun. Nonlinear Sci. Numer. Simulat. 25, 1018 (2015)

    Google Scholar 

  37. V. Uchaikin, R. Sibatov, Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors (Dielectrics and Nanosystems, World Scientific, Singapore, 2013)

    Book  MATH  Google Scholar 

  38. D. Valério, J.A. Tenreiro Machado, V. Kiryakova, Some pioneers of the applications of fractional calculus. Fractional Calc. Appl. Anal. 17(2), 552–578 (2014). doi:10.2478/s13540-014-0185-1

  39. E. Warburg, Uber das Verhalten sogenannter unpolarisierbarer Electroden gegen Wechselstrom. Ann. Phys. Chem. 67, 493–499 (1899)

    Article  MATH  Google Scholar 

  40. B.J. West, Physiology, Promiscuity and Prophecy at the Millennium: A Tale of Tails (World Scientific, Singapore, 1999)

    Book  MATH  Google Scholar 

  41. B.J. West, Fractional Calculus View of Complexity: Tomorrow’s Science (CRC Press, Boca Raton, 2016)

    MATH  Google Scholar 

  42. S. Westerlund, Dead matter has memory. Phys. Scr. 43, 174–179 (1991)

    Article  Google Scholar 

  43. S. Westerlund, L. Ekstam, Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1(5), 826–839 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Caponetto .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Biswas, K., Bohannan, G., Caponetto, R., Mendes Lopes, A., Tenreiro Machado, J.A. (2017). Introduction to Fractional-Order Elements and Devices. In: Fractional-Order Devices. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-54460-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54460-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54459-5

  • Online ISBN: 978-3-319-54460-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics