Skip to main content

The Salt Marsh Ecosystem

  • Chapter
  • First Online:
Fungi in Coastal and Oceanic Marine Ecosystems

Abstract

Highly productive salt marsh grass ecosystems, such as those of Spartina alterniflora, Juncus roemerianus, and Phragmites australis, characterize temperate and high-latitude regions. Endophytic fungi, phylloplane fungi, and weak parasites inhabit healthy and senescent salt marsh grass plants. Dead parts of salt marsh plants are colonized by a large diversity of obligate and facultative marine, mycetaen fungi. Most of the decomposition takes place while the plant parts are still attached to the living plants. Fungal diversity in decomposing salt marsh grass is influenced by the host species, plant part, vertical zonation, and the stage of decomposition. Decay is characterized by leaching, mass loss, and lignocelluloses degradation. Fungal biomass comprises a significant portion of more than 20% of the total dry weight to standing, decomposing salt marsh grass. Bacteria prevail once the decomposed leaves fall into the sediment and fragment. Straminipilan fungi may colonize fragmented detritus in salt marshes. Complete decay and fragmentation may take over a year. The high fungal biomass and microbial nitrogen enrichment make salt marsh grass detritus highly palatable and nutritious to detritivores.

And what if behind me to westward the wall of the woods stands high?

The world lies east: how ample, the marsh and the sea and the sky!

A league and a league of marsh-grass, waist-high, broad in the blade,

Green, and all of a height, and unflecked with a light or a shade,

Stretch leisurely off, in a pleasant plain,

To the terminal blue of the main.

From Sidney Lanier (1842–1881); The Marshes of Glynn

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Nasrawi HG, Hughes AR (2012) Fungal Diversity associated with salt marsh plants Spartina alterniflora and Juncus roemerianus in Florida. Jordan J Biol Sci 5:247–254

    Google Scholar 

  • Barata M (2002) Fungi on the halophyte Spartina maritima in salt marshes. In: Hyde KD (ed) Fungi in marine environments. Fungal Diversity Press, Hong Kong, pp 179–193

    Google Scholar 

  • Bärlocher F, Newell SY (1994) Growth of the saltmarsh periwinkle Littoraria irrorata on fungal and cordgrass diets. Mar Biol 118:109–114

    Article  Google Scholar 

  • Bärlocher F, Newell SY, Arsuffi TL (1989) Digestion of Spartina alterniflora Loisel material with and without fungal constitutes by the periwinkle Littorina irrorata Say (Mollusca: Gastropoda). J Exp Mar Biol Ecol 130:45–53

    Article  Google Scholar 

  • Bergbauer M, Newell SY (1992) Contribution to lignocellulose degradation and DOC formation from a salt marsh by the ascomycete Phaeospheria spartinicola. FEMS Microbiol Ecol 86:341–348

    Google Scholar 

  • Buchan A, Newell SY, Moreta JIL, Moran MA (2002) Analysis of Internal Transcribed Spacer (ITS) regions of rRNA genes in fungal communities in a Southeastern US salt marsh. Microb Ecol 43:329–340

    Article  CAS  PubMed  Google Scholar 

  • Buchan A, Newell SY, Butler M, Biers EJ, Hollibaugh JT, Moran MA (2003) Dynamics of bacterial and fungal communities on decaying salt marsh grass. Appl Environ Microbiol 69:6676–6687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro P, Freitas H (2000) Fungal biomass and decomposition in Spartina maritima leaves in the Mondego salt marsh (Portugal). Hydrobiologia 428:171–177

    Article  Google Scholar 

  • da Luz CM, Barata M (2012) Salt marsh fungi. In: Jones EBG, Pang K-L (eds) Marine mycology-marine fungi and fungal-like organisms. De Gruyter, Berlin, Germany, pp 345–381

    Google Scholar 

  • Duarte CM, Cebrian J (1996) The fate of marine autotrophic production. Limnol Oceanogr 41:1758–1766

    Article  CAS  Google Scholar 

  • Gessner RV (1977) Seasonal occurrence and distribution of fungi associated with Spartina alterniflora from a Rhode Island estuary. Mycologia 69:477–491

    Article  Google Scholar 

  • Gessner RV, Goos R (1973) Fungi from decomposing Spartina alterniflora. Can J Bot 51:51–55

    Article  Google Scholar 

  • Hodson RE, Christian RR, Maccubbin AE (1984) Lignocellulose and lignin in the salt marsh grass, Spartina alterniflora: initial concentrations and short-term post-depositional changes in detrital material. Mar Biol 81:1–7

    Article  CAS  Google Scholar 

  • Hulvey J, Telle S, Nigrelli L, Lamour K, Thines M (2010) Salisapiliaceae – a new family of oomycetes from marsh grass litter of southeastern North America. Persoonia 25:109–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kis-Papo T (2005) Marine fungal communities. In: Dighton J, White JF, Oudemans P (eds) The fungal community, its organization and role in the ecosystem, 3rd edn. CRC Press, Boca Raton, pp 61–92

    Chapter  Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (2001) The biodiversity of fungi on Juncus roemerianus. Mycol Res 105:1409–1412

    Google Scholar 

  • Nakagiri A, Newell SY, Ito T (1994) Two new Halophytophthora species, H. tartarea and H. masteri, from intertidal decomposing leaves in saltmarsh and mangrove regions. Mycoscience 35:223–232

    Article  Google Scholar 

  • Newell SY (1992) Autumn distribution of marine Pythiaceae across a mangrove-salt marsh boundary. Can J Bot 70:1912–1916

    Google Scholar 

  • Newell SY (1993) Decomposition of shoots of a saltmarsh grass; methodology and dynamics of microbial assemblages. Adv Microb Ecol 13:301–326

    Article  Google Scholar 

  • Newell SY (2001a) Multiyear patterns of fungal biomass dynamics and productivity within naturally decaying smooth cordgrass shoots. Limnol Oceanogr 46:573–583

    Article  Google Scholar 

  • Newell SY, Bärlocher F (1993) Removal of fungal and total organic matter from decaying cordgrass leaves by shredder snails. J Exp Mar Biol Ecol 171:39–49

    Article  Google Scholar 

  • Newell SY, Fell JW (1992) Ergosterol content of living and submerged, decaying leaves and twigs of red mangrove. Can J Microbiol 38:979–982

    Article  CAS  Google Scholar 

  • Newell SY, Porter D (2000) Microbial secondary production from saltmarsh-grass shoots, and its known and potential fates. In: Weinstein MP, Kreeger DA (eds) Concepts and controversies in tidal marsh ecology. Kluwer, Amsterdam, The Netherlands, pp 159–185

    Google Scholar 

  • Newell SY, Fallon RD, Miller JD (1989) Decomposition and microbial dynamics for standing, naturally positioned leaves of the salt-marsh grass Spartina alterniflora. Mar Biol 101:471–481

    Article  Google Scholar 

  • Newell RIE, Marshall N, Sasekumar A, Chong VC (1995) Relative importance of benthic microalgae, phytoplankton, and mangroves as sources of nutrition for penaeid prawns and other coastal invertebrates from Malaysia. Mar Biol 123:595–606

    Article  Google Scholar 

  • Newell SY, Porter D, Lingle WL (1996) Lignocellulolysis by ascomycetes (Fungi) of a saltmarsh grass (smooth cordgrass). Microsc Res Tech 33:32–46

    Article  CAS  PubMed  Google Scholar 

  • Poon MOK, Hyde KD (1998) Biodiversity of intertidal estuarine fungi on Phragmites at Mai Po marshes, Hong Kong. Bot Mar 41:141–155

    Google Scholar 

  • Samiaji J, Bärlocher F (1996) Geratology and decomposition of Spartina alterniflora Loisel in a New Brunswick saltmarsh. J Exp Mar Biol Ecol 201:233–252

    Article  Google Scholar 

  • Sridhar KR, Alias SA, Pang K-L (2012a) Mangrove fungi. In: Jones EBG, Pang K-L (eds) Marine mycology-marine fungi and fungal-like organisms. De Gruyter, Berlin, pp 253–271

    Google Scholar 

  • Torzilli AP, Andrykovitch G (1986) Degradation of Spartina lignocellulose by individual and mixed cultures of salt marsh fungi. Can J Bot 64:2211–2215

    Article  CAS  Google Scholar 

  • Torzilli AP, Sikaroodi M, Chalkley D, Gillevet PM (2006) A comparison of fungal communities from four salt marsh plants using automated ribosomal intergenic spacer analysis (ARISA). Mycologia 98:690–698

    Article  CAS  PubMed  Google Scholar 

  • Van Ryckegem G, Verbeken A (2005a) Fungal diversity and community structure on Phragmites australis (Poaceae) along a salinity gradient in the Scheldt estuary (Belgium). Nova Hedwigia 80:173–197

    Article  Google Scholar 

  • Van Ryckegem G, Verbeken A (2005b) Fungal ecology and succession on Phragmites australis in a brackish tidal marsh I Leaf sheaths. Fungal Divers 19:157–187

    Google Scholar 

  • Van Ryckegem G, Gessner MO, Verbeken A (2007) Fungi on leaf blades of Phragmites australis in a brackish tidal marsh: diversity, succession, and leaf decomposition. Microb Ecol 53:600–611

    Article  CAS  PubMed  Google Scholar 

  • Walker AK, Campbell J (2010) Marine fungal diversity: a comparison of natural and created salt marshes of the north-central Gulf of Mexico. Mycologia 102:513–521

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Raghukumar, S. (2017). The Salt Marsh Ecosystem. In: Fungi in Coastal and Oceanic Marine Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-54304-8_6

Download citation

Publish with us

Policies and ethics