Skip to main content

The Marine Environment and the Role of Fungi

  • Chapter
  • First Online:
Fungi in Coastal and Oceanic Marine Ecosystems

Abstract

Marine ecological processes are determined by the physical and chemical properties of seawater. The marine environment is divided into various zones, depending upon the proximity to land and the depth of the water column. Microorganisms play an important role among members of the marine trophic pyramid, comprising photosynthetic primary producers, herbivores, and consumers. Net primary production from the oceans almost equals that from terrestrial plants. The highly productive coastal ecosystem comprises the estuaries, pelagic, mangroves, salt marshes, seagrasses, coral reefs, and algal beds. Phytoplankton, macroalgae, and vascular plants are the primary producers in coastal waters. Phytoplankton alone fulfil this role in oceanic waters. The “biological pump” is crucial in transporting nutrients from the euphotic zone to the deep sea. Fungi occur as symbionts (commensals, mutualists, and parasites) in living marine organisms or as saprotrophs in dead organisms. Saprotrophic fungi use a variety of ecological strategies. Their decompositional activities make detritus more palatable to detritivores. About 500 species of obligately marine mycetaen fungi occur exclusively in the sea. All members of Labyrinthulomycetes and most marine Oomycetes are obligately marine. About 130 species of these are known. A large diversity of facultative marine fungi, which are terrestrial species of mycetaen fungi, are active in the marine environment. Our knowledge of the diversity of fungi in the oceans is rudimentary.

How inappropriate to call this planet Earth, When it is quite clearly Ocean…

Arthur C. Clarke

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beakes GW, Honda D, Thines M (2014) Systematics of the straminipila: labyrinthulomycota, hyphochytriomycota, and oomycota. In: McLaughlin DJ, Spatafora JW (eds) The Mycota VII. Part A. Systematics and evolution, 2nd edn. Springer, Berlin, Heidelberg, pp 39–96

    Google Scholar 

  • Bongiorni L (2012) Thraustochytrids, a neglected component of organic matter decomposition and food webs in marine sediments. In: Raghukumar C (ed) Biology of marine fungi. Springer, Berlin, Heidelberg, pp 1–14

    Chapter  Google Scholar 

  • Bouillon S, Borges AV, Castañeda-Moya E, Diele K, Dittmar T, Duke NC, Kristensen E, Lee SY, Marchand C, Middelburg JJ, Rivera-Monroy VH, Smith TJ III, Twilley RR (2008) Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochem Cycles 22:GB2013. doi:10.1029/2007GB003052

    Article  Google Scholar 

  • Brink KH (2004) The grass is greener in the coastal ocean. Oceanus. http://oceanusmag.whoi.edu/v42n3/brink.html

  • Cooke RC, Rayner ADM (1984) Ecology of saprotrophic fungi. Longman, London, New York

    Google Scholar 

  • Dix NJ, Webster J (1995) Fungal ecology. Springer, The Netherlands

    Book  Google Scholar 

  • Duarte CM, Cebrian J (1996) The fate of marine autotrophic production. Limnol Oceanogr 41:1758–1766

    Article  CAS  Google Scholar 

  • Duarte CM, Middelburg J, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1–8

    Article  CAS  Google Scholar 

  • Enriquez S, Duarte CM, Sand-Jensen K (1993) Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia 94:457–471

    Article  CAS  PubMed  Google Scholar 

  • Fell JW (2012) Yeasts in marine environments. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. Walter de Gruyter GmbH & Co KG, Berlin/Boston, pp 91–102

    Google Scholar 

  • Gachon CMM, Sime-Ngando T, Strittmatter M, Chambouvet A, Kimet GH (2010) Algal diseases: spotlight on a black box trends. Plant Sci 15:633–640

    Article  CAS  Google Scholar 

  • Gleason FH, Frithjof CK, Glöckling SL (2012a) Zoosporic true fungi. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. Walter de Gruyter, Berlin/Boston, pp 101–114

    Google Scholar 

  • Harrison KE (1990) The role of nutrition in maturation, reproduction and embryonic development of decapod crustaceans: a review. J Shellfish Res 9:1–28

    Google Scholar 

  • Hyde KD (ed) (2002) Fungi in marine environments, Fungal Diversity Research Series. Fungal Diversity Press, Hong Kong

    Google Scholar 

  • Hyde KD, Jones EBG, Leano E, Pointing S, Poonyth ÃD, Vrijmoed L (1998) Role of fungi in marine ecosystem. Biodivers Conserv 7:1147–1161

    Article  Google Scholar 

  • Jebraj CS, Forster D, Kauff F, Stoeck T (2012) Molecular diversity of fungi from marine Oxygen-Deficient Environments (ODEs). In: Raghukumar C (ed) Biology of marine fungi. Springer, Germany, pp 189–208

    Chapter  Google Scholar 

  • Jones EBG, Pang KL (eds) (2012) Marine fungi and fungal-like organisms. Walter de Gruyter GmbH & Co KG, Berlin/Boston

    Google Scholar 

  • Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:1–187

    Google Scholar 

  • Jones EBG, Suetrong S, Sakayaroj J, Bahkali AH, Abdel-Wahab MA, Boekhout T, Pang K-L (2015) Classification of marine ascomycota, basidiomycota, blastocladiomycota and chytridiomycota. Fungal Divers 73:1–72

    Article  Google Scholar 

  • Karpov S, Mamkaeva MA, Aleoshin V, Nassonova E, Lilje O, Gleason FH (2014) Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia. Front Microbiol 5:112

    Article  PubMed  PubMed Central  Google Scholar 

  • Kendrick B (2000) The Fifth Kingdom. Mycologue Publications British Columbia, Canada

    Google Scholar 

  • Lalli CM, Parsons TR (1997) Biological oceanography: an introduction, 2nd edn. Elsevier Butterworth-Heinemann, Oxford

    Google Scholar 

  • Lee SY (1995) Mangrove outwelling: a review. Hydrobiologia 295:203–212

    Article  Google Scholar 

  • Mann KH (1988) Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limnol Oceanogr 33:910–930

    CAS  Google Scholar 

  • Marano AV, Pires-Zottarelli CLA, de Souza JI, Glockling SL, Leano EM, Gachon CMM, Strittmatter M, Gleason FH (2012) Hyphochytriomycota, oomycota and perkinsozoa (Super-group Chromalveolata). In: Jones EBG, Pang K-L (eds) Marine mycology-marine fungi and fungal-like organisms. De Gruyter, Berlin/Boston, pp 167–213

    Google Scholar 

  • Nakai R, Naganuma T (2015) Diversity and ecology of thraustochytrid protists in the marine environment. In: Ohtsuka S, Suzaki T, Horiguchi T, Suzuki N, Not F (eds) Marine Protists. Springer, Japan, pp 331–346

    Chapter  Google Scholar 

  • Newell SY (1984) Bacterial and fungal productivity in the marine environment: a contrastive overview. Colloque Int Cent Natn Rech Scient (Marseille) 331:133–139

    Google Scholar 

  • Newell SY (1996a) Established and potential impacts of eukaryotic mycelial decomposers in marine/terrestrial ecotones. J Exp Mar Biol Ecol 200:187–206

    Article  Google Scholar 

  • Newell SY, Porter D (2000) Microbial secondary production from saltmarsh-grass shoots, and its known and potential fates. In: Weinstein MP, Kreeger DA (eds) Concepts and controversies in tidal marsh ecology. Kluwer, Amsterdam, The Netherlands, pp 159–185

    Google Scholar 

  • O’Brien HE, Parrent JL, Jackson JA, Moncalvo J-M, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips NW (1984) Role of different microbes and substrates as potential supplies of specific essential nutrients to marine detritivores. Bull Mar Sci 35:283–298

    Google Scholar 

  • Raghukumar S (1990) Speculations on niches occupied by fungi in the sea with relation to bacteria. Proc Indian Acad Sci Earth Planet Sci 100:129–138

    Google Scholar 

  • Raghukumar S (2002) Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). Eur J Protistol 38:127–136

    Article  Google Scholar 

  • Raghukumar S (2005) The role of fungi in marine detrital processes. In: Ramaiah N (ed) Marine microbiology: facets and opportunities. National Institute of Oceanography, Goa, India, pp 91–101

    Google Scholar 

  • Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Divers 31:19–35

    Google Scholar 

  • Raghukumar S, Damare V (2011) Increasing evidence for the important role of Labyrinthulomycetes in marine ecosystems. Bot Mar 54:3–11

    Article  Google Scholar 

  • Rice DL (1982) The detritus nitrogen problem: new observations and perspectives from organic geochemistry. Mar Ecol Prog Ser 9:153–162

    Article  CAS  Google Scholar 

  • Richards TA, Jones MDM, Leonard G, Bass D (2012) Marine fungi: their ecology and molecular diversity. Annu Rev Mar Sci 4:495–522

    Article  Google Scholar 

  • Short FT, Burdick DM, Wolf J, Jones GE (1993) Eelgrass in estuarine research reserves along the East Coast, USA, Part I: Declines from pollution and disease and Part II: Management of eelgrass meadows. NOAA Coastal Ocean Program Publ

    Google Scholar 

  • Sigee DC (2005) Freshwater microbiology. Wiley, Chichester

    Google Scholar 

  • Stentiford GD, Feist FW, Stone DM, Bateman KS, Dunn AM (2013) Microsporidia: diverse, dynamic, and emergent pathogens in aquatic systems. Trends Parasitol 11:567–578

    Article  Google Scholar 

  • Torzilli AP, Andrykovitch G (1986) Degradation of Spartina lignocellulose by individual and mixed cultures of salt marsh fungi. Can J Bot 64:2211–2215

    Article  CAS  Google Scholar 

  • Valiela I, Wilson J, Buchsbaum R, Rietsma C, Bryant D, Foreman K, Teal J (1984) Importance of chemical composition of salt marsh litter on decay rates and feeding by detritivores. Bull Mar Sci 35:261–269

    Google Scholar 

  • Walker DI, McComb AJ (1988) Seasonal variation in the production, biomass and nutrient status of Arnphibolis antartica (Labill) Sonders ex Aschers and Posidonia australis hook f in Shark Bay, Western Australia. Aquat Bot 31:259–275

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Raghukumar, S. (2017). The Marine Environment and the Role of Fungi. In: Fungi in Coastal and Oceanic Marine Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-54304-8_2

Download citation

Publish with us

Policies and ethics