Skip to main content

The Evolutionary Resilience of Distributed Cellular Computing

  • Conference paper
  • First Online:
Membrane Computing (CMC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10105))

Included in the following conference series:

Abstract

Individual cells process environmental information relevant to their functions using biochemical processes and signalling networks that implement a flow of information from the extracellular environment, across the cell membrane to the cytoplasm in which the actual cellular computation takes place (in the form of gene expression). In many cases, the environmental information to be processed are either molecules produced by other cells or shared extracellular molecules - in this case the processing of the environmental information is a distributed, highly parallel computing process, in which cells must synchronize, coordinate and cooperate. While the ability of cells to cooperate can increase their overall computational power, it also raises an evolutionary stability issue - population of cooperating cells are at risk of cheating cells invasions, cells that do not cooperate but exploit the benefits of the population. The bridge between membrane computing (as a mathematical formalization of cellular computing) and evolutionary dynamics (as mathematical formalization of natural selection) could lead to interesting insights on the evolutionary stability of cellular computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cavaliere, M., Mardare, R., Sedwards, S.: A multiset-based model of synchronizing agents: computability and robustness. Theor. Comput. Sci. 391(3), 216–238 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cavaliere, M., Poyatos, J.F.: Plasticity facilitates sustainable growth in the commons. J. Roy. Soc. Inter. 10(81), 20121006 (2013)

    Article  Google Scholar 

  3. Feinerman, O., Korman, A.: Theoretical distributed computing meets biology: a review. In: Hota, C., Srimani, P.K. (eds.) ICDCIT 2013. LNCS, vol. 7753, pp. 1–18. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36071-8_1

    Chapter  Google Scholar 

  4. Harrington, K.I., Sanchez, A.: Eco-evolutionary dynamics of complex social strategies in microbial communities. Commun. Integr. Biol. 7(1), e28230 (2014)

    Article  Google Scholar 

  5. Harrison, F., Paul, J., Massey, R.C., Buckling, A.: Interspecific competition and siderophore-mediated cooperation in pseudomonas aeruginosa. ISME J. 2(1), 49–55 (2008)

    Article  Google Scholar 

  6. Hauert, C., Holmes, M., Doebeli, M.: Evolutionary games and population dynamics: maintenance of cooperation in public goods games. Proc. Roy. Soc. Lon. B: Biol. Sci. 273(1600), 2565–2571 (2006)

    Article  Google Scholar 

  7. Hauert, C., Wakano, J.Y., Doebeli, M.: Ecological public goods games: cooperation and bifurcation. Theor. Popul. Biol. 73(2), 257–263 (2008)

    Article  MATH  Google Scholar 

  8. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 3rd edn. Addison-Wesley Longman Publishing Co. Inc., Boston (2006)

    MATH  Google Scholar 

  9. Ilachinski, A.: Cellular Automata: A Discrete Universe. World Scientific, River Edge (2001)

    Book  MATH  Google Scholar 

  10. Kari, L., Rozenberg, G.: The many facets of natural computing. Commun. ACM 51(10), 72 (2008)

    Article  Google Scholar 

  11. Levin, S.A.: Public goods in relation to competition, cooperation, and spite. Proc. Natl. Acad. Sci. 111(Supplement_3), 10838–10845 (2014)

    Article  Google Scholar 

  12. Macía, J., Posas, F., Solé, R.V.: Distributed computation: the new wave of synthetic biology devices. Trends Biotechnol. 30(6), 342–349 (2012)

    Article  Google Scholar 

  13. Mehta, P., Schwab, D.J.: Energetic costs of cellular computation. Proc. Natl. Acad. Sci. 109(44), 17978–17982 (2012)

    Article  Google Scholar 

  14. Navlakha, S., Bar-Joseph, Z.: Distributed information processing in biological and computational systems. Commun. ACM 58(1), 94–102 (2015)

    Article  Google Scholar 

  15. Paun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press Inc., Oxford (2010)

    Book  MATH  Google Scholar 

  16. Perkins, T.J., Swain, P.S.: Strategies for cellular decision-making. Mol. Syst. Biol. 5, 326 (2009)

    Article  Google Scholar 

  17. Rauch, J., Kondev, J., Sanchez, A.: Cooperators trade off ecological resilience and evolutionary stability in public goods games. J. R. Soc. Interface (2017). http://dx.doi.org/10.1098/rsif.2016.0967

  18. Ross-Gillespie, A., Gardner, A., Buckling, A., West, S.A., Griffin, A.S.: Density dependence and cooperation: theory and a test with bacteria. Evolution 63(9), 2315–2325 (2009)

    Article  Google Scholar 

  19. Ross-Gillespie, A., Gardner, A., West, S.A., Griffin, A.S.: Frequency dependence and cooperation: theory and a test with bacteria. Am. Nat. 170(3), 331–342 (2007)

    Article  Google Scholar 

  20. Simon, H.A.: Models of Man; Social and Rational. Wiley, New York (1957)

    MATH  Google Scholar 

  21. Sober, E.: The Nature of Selection: Evolutionary Theory in Philosophical Focus. University of Chicago Press, Chicago (1993)

    Google Scholar 

  22. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Nat. Comput. 7(4), 615–633 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

M.C. acknowledges the support from the Engineering and Physical Sciences Research Council (EPSRC) grant EP/J02175X/1. Work in the Sanchez laboratory is supported by a Young Investigator grant from the Human Frontiers Science Project and a Scialog seed grant from Simons Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Cavaliere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cavaliere, M., Sanchez, A. (2017). The Evolutionary Resilience of Distributed Cellular Computing. In: Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C. (eds) Membrane Computing. CMC 2016. Lecture Notes in Computer Science(), vol 10105. Springer, Cham. https://doi.org/10.1007/978-3-319-54072-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54072-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54071-9

  • Online ISBN: 978-3-319-54072-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics