Skip to main content

The Anthropology of Skin Colors: An Examination of the Evolution of Skin Pigmentation and the Concepts of Race and Skin of Color

  • Chapter
  • First Online:
Dermatoanthropology of Ethnic Skin and Hair

Abstract

The diverse array of human skin colors is a product of adaptive evolution that has occurred as ancestral and modern humans have dispersed into environments with diverse ultraviolet radiation (UVR) regimes. Eumelanin regulates the penetration and biological activity of UVR into the skin, and its presence affects the rates of photodegradation of folate and of photosynthesis of vitamin D in the skin. The earliest members of the genus Homo and of the species Homo sapiens evolved in equatorial Africa and had darkly pigmented skin, rich in natural eumelanin sunscreen. Dispersals of humans into nontropical latitudes in Africa and Eurasia were associated with strong natural selection favoring depigmentation. Multiple dispersals in time and space resulted in the evolution of multiple genetic solutions to the same adaptive problem, and the evolution of similar skin color phenotypes caused by different suites of pigmentation genes. There is no biological basis for the concepts of race or ethnicity because they are nonexclusive categories defined by cultural and linguistic characteristics. Their utility in biomedical studies is limited to their imperfect synonymy class, and class-based associations with health outcomes. “Skin of color” designates non-European skin, and lacks any inherent biological unity except for usually exhibiting more eumelanin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jablonski NG. The evolution of human skin and skin color. Annu Rev Anthropol. 2004;33:585–623.

    Article  Google Scholar 

  2. Zihlman AL, Cohn BA. The adaptive response of human skin to the savanna. Hum Evol. 1988;3(5):397–409.

    Article  Google Scholar 

  3. Jablonski NG, Chaplin G. The evolution of human skin coloration. J Hum Evol. 2000;39(1):57–106.

    Article  CAS  PubMed  Google Scholar 

  4. Wheeler PE. The evolution of bipedality and loss of functional body hair in hominids. J Hum Evol. 1984;13(1):91–8.

    Article  Google Scholar 

  5. Bramble DM, Lieberman DE. Endurance running and the evolution of Homo. Nature. 2004;432(7015):345–52.

    Article  CAS  PubMed  Google Scholar 

  6. The Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature. 2005;437(7055):69–87.

    Article  Google Scholar 

  7. Toulza E, Mattiuzzo N, Galliano M-F, Jonca N, Dossat C, Jacob D, et al. Large-scale identification of human genes implicated in epidermal barrier function. Genome Biol. 2007;8(6):R107.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gautam P, Chaurasia A, Bhattacharya A, Grover R, Consortium IGV, Mukerji M, et al. Population diversity and adaptive evolution in keratinization genes: impact of environment in shaping skin phenotypes. Mol Biol Evol. 2014;32(3):555–73.

    Google Scholar 

  9. Rogers AR, Iltis D, Wooding S. Genetic variation at the MC1R locus and the time since loss of human body hair. Curr Anthropol. 2004;45(1):105–24.

    Article  Google Scholar 

  10. Hudjashov G, Villems R, Kivisild T. Global patterns of diversity and selection in human tyrosinase gene. PLoS ONE. 2013;8(9):e74307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harding RM, Healy E, Ray AJ, Ellis NS, Flanagan N, Todd C, et al. Evidence for variable selective pressures at MC1R. Am J Hum Genet. 2000;66:1351–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chaplin G, Jablonski NG. Environmental correlates of human skin color, revisited. Am J Phys Anthropol. 2002;117(S34):53.

    Google Scholar 

  13. Blum HF. Does the melanin pigment of human skin have adaptive value? Quart Rev Biol. 1961;36(1):50–63.

    Article  CAS  PubMed  Google Scholar 

  14. Greaves M. Was skin cancer a selective force for black pigmentation in early hominin evolution? Proc R Soc B: Biol Sci. 2014;281(1781):1–10.

    Article  Google Scholar 

  15. Jablonski NG, Chaplin G. Skin cancer was not a potent selective force in the evolution of protective pigmentation in early hominins. Proc R Soc B: Biol Sci. 2014;281(1789).

    Google Scholar 

  16. Mackintosh JA. The antimicrobial properties of melanocytes, melanosomes and melanin and the evolution of black skin. J Theor Biol. 2001;211(2):101–13.

    Article  CAS  PubMed  Google Scholar 

  17. Wassermann HP. Human pigmentation and environmental adaptation. Arch Environ Health. 1965;11(5):691–4.

    Article  CAS  PubMed  Google Scholar 

  18. Wassermann HP. Ethnic pigmentation: historical, physiological, and clinical aspects. Amsterdam: Excerpta Medica; 1974. 284 p.

    Google Scholar 

  19. Elias PM, Menon G, Wetzel BK, Williams JW. Evidence that stress to the epidermal barrier influenced the development of pigmentation in humans. Pigm Cell Melanoma Res. 2009;22(4):420–34.

    Article  CAS  Google Scholar 

  20. Elias PM, Menon G, Wetzel BK, Williams JW. Barrier requirements as the evolutionary “driver” of epidermal pigmentation in humans. Am J Hum Biol. 2010;22(4):526–37.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Elias PM, Williams ML. Basis for the gain and subsequent dilution of epidermal pigmentation during human evolution: the barrier and metabolic conservation hypotheses revisited. Am J Phys Anthropol. 2016;Early View:1–19.

    Google Scholar 

  22. Branda RF, Eaton JW. Skin color and nutrient photolysis: an evolutionary hypothesis. Science. 1978;201(4356):625–6.

    Article  CAS  PubMed  Google Scholar 

  23. Off MK, Steindal AE, Porojnicu AC, Juzeniene A, Vorobey A, Johnsson A, et al. Ultraviolet photodegradation of folic acid. J Photochem Photobiol, B. 2005;80(1):47–55.

    Article  CAS  Google Scholar 

  24. Steindal AH, Juzeniene A, Johnsson A, Moan J. Photodegradation of 5-methyltetrahydrofolate: biophysical aspects. Photochem Photobiol. 2006;82(6):1651–5.

    Article  CAS  PubMed  Google Scholar 

  25. Steindal AH, Tam TTT, Lu XY, Juzeniene A, Moan J. 5-Methyltetrahydrofolate is photosensitive in the presence of riboflavin. Photochem Photobiol Sci. 2008;7(7):814–8.

    Article  CAS  PubMed  Google Scholar 

  26. Tam TTT, Juzeniene A, Steindal AH, Iani V, Moan J. Photodegradation of 5-methyltetrahydrofolate in the presence of uroporphyrin. J Photochem Photobiol, B. 2009;94(3):201–4.

    Article  CAS  Google Scholar 

  27. Lucock MD, Glanville T, Ovadia L, Yates Z, Walker J, Simpson N. Photoperiod at conception predicts C677T-MTHFR genotype: a novel gene-environment interaction. Am J Hum Biol. 2010;22(4):484–9.

    Article  PubMed  Google Scholar 

  28. Lucock MD, Yates Z, Martin C, Choi J-H, Boyd L, Tang S, et al. Vitamin D, folate, and potential early lifecycle environmental origin of significant adult phenotypes. Evol Med Public Health. 2014;2014(1):69–91.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Stanhewicz AE, Bruning RS, Smith CJ, Kenney WL, Holowatz LA. Local tetrahydrobiopterin administration augments reflex cutaneous vasodilation through nitric oxide-dependent mechanisms in aged human skin. J Appl Physiol. 2012;112(5):791–7.

    Article  CAS  PubMed  Google Scholar 

  30. Alexander LM, Kutz JL, Kenney WL. Tetrahydrobiopterin increases NO-dependent vasodilation in hypercholesterolemic human skin through eNOS-coupling mechanisms. Am J Physiol Regul Integr Comp Physiol. 2013;304(2):R164–9.

    Article  CAS  PubMed  Google Scholar 

  31. Smith CJ, Kenney WL, Alexander LM. Regional relation between skin blood flow and sweating to passive heating and local administration of acetylcholine in young, healthy humans. Am J Physiol Regul Integr Comp Physiol. 2013;304(7):R566–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stanhewicz Anna E, Alexander Lacy M, Kenney WL. Folic acid supplementation improves microvascular function in older adults through nitric oxide-dependent mechanisms. Clin Sci. 2015;129(2):159–67.

    Google Scholar 

  33. Jablonski NG, Chaplin G. Human skin pigmentation as an adaptation to UV radiation. Proc Natl Acad Sci. 2010;107(Supplement 2):8962–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Antón SC, Potts R, Aiello LC. Evolution of early Homo: an integrated biological perspective. Science. 2014;345(6192).

    Google Scholar 

  35. Hershkovitz I, Marder O, Ayalon A, Bar-Matthews M, Yasur G, Boaretto E, et al. Levantine cranium from Manot Cave (Israel) foreshadows the first European modern humans. Nature. 2015;520:216–9.

    Article  CAS  PubMed  Google Scholar 

  36. Wang S, Lachance J, Tishkoff SA, Hey J, Xing J. Apparent variation in Neanderthal admixture among African populations is consistent with gene flow from non-African populations. Genome Biol Evol. 2013;5(11):2075–81.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sankararaman S, Mallick S, Dannemann M, Prufer K, Kelso J, Paabo S, et al. The genomic landscape of Neanderthal ancestry in present-day humans. Nature. 2014;507:354–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Madronich S, McKenzie RL, Bjorn LO, Caldwell MM. Changes in biologically active ultraviolet radiation reaching the Earth’s surface. J Photochem Photobiol, B. 1998;46(1–3):5–19.

    Article  CAS  Google Scholar 

  39. Grifoni D, Zipoli G, Sabatini F, Messeri G, Bacci L. Action spectra affect variability of the climatology of biologically effective ultraviolet radiation on cloud-free days. Radiat Prot Dosimetry. 2013;157(4):491–8.

    Article  CAS  PubMed  Google Scholar 

  40. Chaplin G, Jablonski NG. Hemispheric difference in human skin color. Am J Phys Anthropol. 1998;107(2):221–4.

    Article  CAS  PubMed  Google Scholar 

  41. Webb AR, Kline L, Holick MF. Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J Clin Endocrinol Metab. 1988;67(2):373–8.

    Article  CAS  PubMed  Google Scholar 

  42. Webb AR. Who, what, where and when—influences on cutaneous vitamin D synthesis. Prog Biophys Mol Biol. 2006;92(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  43. Clemens TL, Henderson SL, Adams JS, Holick MF. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet. 1982;319(8263):74–6.

    Article  Google Scholar 

  44. Chen TC, Chimeh F, Lu Z, Mathieu J, Person KS, Zhang A, et al. Factors that influence the cutaneous synthesis and dietary sources of vitamin D. Arch Biochem Biophys. 2007;460(2):213–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nielsen KP, Zhao L, Stamnes JJ, Stamnes K, Moan J. The importance of the depth distribution of melanin in skin for DNA protection and other photobiological processes. J Photochem Photobiol, B. 2006;82(3):194–8.

    Article  CAS  Google Scholar 

  46. Armas LAG, Dowell S, Akhter M, Duthuluru S, Huerter C, Hollis BW, et al. Ultraviolet-B radiation increases serum 25-hydroxyvitamin D levels: the effect of UVB dose and skin color. Am Acad Dermatol. 2007;57(4):588–93.

    Article  Google Scholar 

  47. Harris SS, Dawson-Hughes B. Seasonal changes in plasma 25-hydroxyvitamin D concentrations of young American black and white women. Am J Clin Nutr. 1998;67(6):1232–6.

    CAS  PubMed  Google Scholar 

  48. Chaplin G, Jablonski NG. Vitamin D and the evolution of human depigmentation. Am J Phys Anthropol. 2009;139(4):451–61.

    Article  PubMed  Google Scholar 

  49. Jablonski NG, Chaplin G. Human skin pigmentation, migration and disease susceptibility. Philos Trans R Soc B Biol Sci. 2012;367(1590):785–92.

    Article  CAS  Google Scholar 

  50. Jablonski NG, Chaplin G. Epidermal pigmentation in the human lineage is an adaptation to ultraviolet radiation. J Hum Evol. 2013;65(5):671–5.

    Article  PubMed  Google Scholar 

  51. Saternus R, Pilz S, Graber S, Kleber M, Marz W, Vogt T, et al. A closer look at evolution: variants (SNPs) of genes involved in skin pigmentation, including EXOC2, TYR, TYRP1, and DCT, are associated with 25(OH)D serum concentration. Endocrinology. 2015;156(1):39–47.

    Article  PubMed  Google Scholar 

  52. Rossberg W, Saternus R, Wagenpfeil S, Kleber M, Marz W, Reichrath S, et al. Human pigmentation, cutaneous vitamin D synthesis and evolution: variants of genes (SNPs) involved in skin pigmentation are associated with 25(OH)D serum concentration. Anticancer Res. 2016;36(3):1429–37.

    CAS  PubMed  Google Scholar 

  53. Norton HL, Kittles RA, Parra E, McKeigue P, Mao X, Cheng K, et al. Genetic evidence for the convergent evolution of light skin in Europeans and East Asians. Mol Biol Evol. 2007;24(3):710–22.

    Article  CAS  PubMed  Google Scholar 

  54. Lamason RL, Mohideen M-APK, Mest JR, Wong AC, Norton HL, Aros MC, et al. SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science. 2005;310(5755):1782–6.

    Article  CAS  PubMed  Google Scholar 

  55. Maria de Gruijter J, Lao O, Vermeulen M, Xue Y, Woodwark C, Gillson CJ, et al. Contrasting signals of positive selection in genes involved in human skin-color variation from tests based on SNP scans and resequencing. Invest Genet. 2011;2(1):1–12.

    Article  Google Scholar 

  56. Yin L, Coelho SG, Ebsen D, Smuda C, Mahns A, Miller SA, et al. Epidermal gene expression and ethnic pigmentation variations among individuals of Asian, European and African ancestry. Exp Dermatol. 2014;23(10):731–5.

    Article  PubMed  Google Scholar 

  57. Wilde S, Timpson A, Kirsanow K, Kaiser E, Kayser M, Unterlander M, et al. Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5000 y. Proc Natl Acad Sci. 2014;Early Edition:1–6.

    Google Scholar 

  58. Allentoft ME, Sikora M, Sjogren K-G, Rasmussen S, Rasmussen M, Stenderup J, et al. Population genomics of Bronze Age Eurasia. Nature. 2015;522(7555):167–72.

    Article  CAS  PubMed  Google Scholar 

  59. Quillen EE. The evolution of tanning needs its day in the sun. Hum Biol. 2015;87(4):352–60.

    Article  PubMed  Google Scholar 

  60. Nan H, Kraft P, Qureshi AA, Guo Q, Chen C, Hankinson SE, et al. Genome-wide association study of tanning phenotype in a population of European ancestry. J Invest Dermatol. 2009;129(9):2250–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Henn BM, Cavalli-Sforza LL, Feldman MW. The great human expansion. Proc Natl Acad Sci. 2012;109(44):17758–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jablonski NG. Living color: the biological and social meaning of skin color. Berkeley, CA: University of California Press; 2012: 260 p.

    Google Scholar 

  63. Samson J. Race and empire. In: Emsley C, Martel G, editors. Harlow, UK: Pearson Education Limited; 2005. 165 p.

    Google Scholar 

  64. Sanjek R. The enduring inequalities of race. In: Gregory S, Sanjek R, editors. race. New Brunswick, NJ: Rutgers University Press; 1994. p. 1–17.

    Google Scholar 

  65. Lewontin RC. Human diversity. W.H. Freeman & Company; 1995.

    Google Scholar 

  66. Long JC, Kittles RA. Human genetic diversity and the nonexistence of biological races. Hum Biol. 2009;81(5–6):777–98.

    Article  PubMed  Google Scholar 

  67. Barbujani G, Ghirotto S, Tassi F. Nine things to remember about human genome diversity. Tissue Antigens. 2013;82(3):155–64.

    Article  CAS  PubMed  Google Scholar 

  68. Jablonski NG. ‘Ethnic skin’ and why the study of human cutaneous diversity is important. Br J Dermatol. 2013;169 Suppl 3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina G. Jablonski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jablonski, N.G. (2017). The Anthropology of Skin Colors: An Examination of the Evolution of Skin Pigmentation and the Concepts of Race and Skin of Color. In: Vashi, N., Maibach, H. (eds) Dermatoanthropology of Ethnic Skin and Hair. Springer, Cham. https://doi.org/10.1007/978-3-319-53961-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53961-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53960-7

  • Online ISBN: 978-3-319-53961-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics