Skip to main content

Energy and Spectrum Harvesting in Sensor Networks

  • Chapter
  • First Online:
Resource Management for Energy and Spectrum Harvesting Sensor Networks

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 471 Accesses

Abstract

This chapter provides a comprehensive survey of existing literature of energy and spectrum allocation regarding ESHSNs, to understand the issues related in a better way. We first survey the EH process modeling and energy allocation which provide insights for efficient utilization of harvested energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The cumulative energy consumed cannot surpass the cumulative energy harvested by that time [16].

References

  1. M.L. Ku, W. Li, Y. Chen, K.J.R. Liu, Advances in energy harvesting communications: past, present, and future challenges. IEEE Commun. Surv. Tutorials 18(2), 1384–1412 (2016)

    Article  Google Scholar 

  2. Z. Wang, V. Aggarwal, X. Wang, Power allocation for energy harvesting transmitter with causal information. IEEE Trans. Commun. 62(11), 4080–4093 (2014)

    Article  Google Scholar 

  3. S. Lee, B. Kwon, S. Lee, A.C. Bovik, Bucket: scheduling of solar-powered sensor networks via cross-layer optimization. IEEE Sensors J. 15(3), 1489–1503 (2015)

    Article  Google Scholar 

  4. W. Xu, Y. Zhang, Q. Shi, and X. Wang, Energy management and cross layer optimization for wireless sensor network powered by heterogeneous energy sources, IEEE Trans. Wirel. Commun. 14(5), 2814–2826 (2015)

    Google Scholar 

  5. L. Huang, M. Neely, Utility optimal scheduling in energy-harvesting networks. IEEE/ACM Trans. Netw. 21(4), 1117–1130 (2013)

    Article  Google Scholar 

  6. H. Zhou, N. Cheng, N. Lu, L. Gui, D. Zhang, Q. Yu, F. Bai, X.S. Shen, Whitefi infostation: engineering vehicular media streaming with geolocation database. IEEE J. Sel. Areas Commun. 34(8), 2260–2274 (2016)

    Article  Google Scholar 

  7. W. Liu, X. Zhou, S. Durrani, H. Mehrpouyan, S.D. Blostein, Energy harvesting wireless sensor networks: delay analysis considering energy costs of sensing and transmission. IEEE Trans. Wirel. Commun. 15(7), 4635–4650 (2016)

    Google Scholar 

  8. C. Yang, K.W. Chin, On nodes placement in energy harvesting wireless sensor networks for coverage and connectivity. IEEE Trans. Ind. Inf. (to be published)

    Google Scholar 

  9. D. Zordan, T. Melodia, M. Rossi, On the design of temporal compression strategies for energy harvesting sensor networks. IEEE Trans. Wirel. Commun. 15(2), 1336–1352 (2016)

    Article  Google Scholar 

  10. D. Niyato, E. Hossain, A. Fallahi, Sleep and wakeup strategies in solar-powered wireless sensor/mesh networks: performance analysis and optimization. IEEE Trans. Mobile Comput. 6(2), 221–236 (2007)

    Article  Google Scholar 

  11. N. Michelusi, M. Zorzi, Optimal adaptive random multiaccess in energy harvesting wireless sensor networks. IEEE Trans. Commun. 63(4), 1355–1372 (2015)

    Google Scholar 

  12. N. Michelusi, L. Badia, M. Zorzi, Optimal transmission policies for energy harvesting devices with limited state-of-charge knowledge. IEEE Trans. Commun. 62(11), 3969–3982 (2014)

    Article  Google Scholar 

  13. D.D. Testa, N. Michelusi, M. Zorzi, Optimal transmission policies for two-user energy harvesting device networks with limited state-of-charge knowledge. IEEE Trans. Wirel. Commun. 15(2), 1393–1405 (2016)

    Article  Google Scholar 

  14. M.L. Ku, Y. Chen, K.J.R. Liu, Data-driven stochastic models and policies for energy harvesting sensor communications. IEEE J. Sel. Areas Commun. 33(8), 1505–1520 (2015)

    Google Scholar 

  15. E. Ibarra, A. Antonopoulos, E. Kartsakli, J.J.P.C. Rodrigues, C. Verikoukis, QoS-aware energy management in body sensor nodes powered by human energy harvesting. IEEE Sensors J. 16(2), 542–549 (2016)

    Article  Google Scholar 

  16. A. Kansal, J. Hsu, S. Zahedi, M.B. Srivastava, Power management in energy harvesting sensor networks. ACM Trans. Embed. Comput. Syst. 6(4) (2007). doi:10.1145/1274858.1274870

  17. D. Zhang, Z. Chen, H. Zhou, L. Chen, X. Shen, Energy-balanced cooperative transmission based on relay selection and power control in energy harvesting wireless sensor network. Comput. Netw. 104, 189–197 (2016)

    Article  Google Scholar 

  18. D. Zhang, Z. Chen, J. Ren, Z. Ning, K.M. Awad, H. Zhou, X. Shen, Energy harvesting-aided spectrum sensing and data transmission in heterogeneous cognitive radio sensor network. IEEE Trans. Veh. Technol. (to be published). doi:10.1109/TVT.2016.2551721

  19. A. Cammarano, C. Petrioli, D. Spenza, Online energy harvesting prediction in environmentally powered wireless sensor networks. IEEE Sensors J. 16(17), 6793–6804 (2016)

    Article  Google Scholar 

  20. A. Mehrabi, K. Kim, General framework for network throughput maximization in sink-based energy harvesting wireless sensor networks. IEEE Trans. Mobile Comput. (to be published). doi:10.1109/TMC.2016.2607716

  21. A. Mehrabi, K. Kim, Maximizing data collection throughput on a path in energy harvesting sensor networks using a mobile sink. IEEE Trans. Mobile Comput. 15(3), 690–704 (2016)

    Google Scholar 

  22. J. Ren, Y. Zhang, R. Deng, N. Zhang, D. Zhang, X. Shen, Joint channel access and sampling rate control in energy harvesting cognitive radio sensor networks. IEEE Trans. Emerg. Top. Comput. (to be published). doi:10.1109/TETC.2016.2555806

  23. Y. Zhang, S. He, J. Chen, Y. Sun, X. Shen, Distributed sampling rate control for rechargeable sensor nodes with limited battery capacity. IEEE Trans. Wirel. Commun. 12(6), 3096–3106 (2013)

    Article  Google Scholar 

  24. R.-S. Liu, P. Sinha, C. Koksal, Joint energy management and resource allocation in rechargeable sensor networks, in Proceedings of IEEE INFOCOM (2010)

    Google Scholar 

  25. Y. Zhang, S. He, J. Chen, Data gathering optimization by dynamic sensing and routing in rechargeable sensor networks. IEEE/ACM Trans. Netw. 24(3), 1632–1646 (2016)

    Article  Google Scholar 

  26. R. Deng, Y. Zhang, S. He, J. Chen, X. Shen, Maximizing network utility of rechargeable sensor networks with spatiotemporally coupled constraints. IEEE J. Sel. Areas Commun. 34(5), 1307–1319 (2016)

    Article  Google Scholar 

  27. R. Srivastava, C.E. Koksal, Basic performance limits and tradeoffs in energy-harvesting sensor nodes with finite data and energy storage. IEEE/ACM Trans. Netw. 21(4), 1049–1062 (2013)

    Article  Google Scholar 

  28. K.J. Prabuchandran, S.K. Meena, S. Bhatnagar, Q-learning based energy management policies for a single sensor node with finite buffer. IEEE Wirel. Commun. Lett. 2(1), 82–85 (2013)

    Article  Google Scholar 

  29. S. Knorn, S. Dey, A. Ahln, D.E. Quevedo, Distortion minimization in multi-sensor estimation using energy harvesting and energy sharing. IEEE Trans. Signal Process. 63(11), 2848–2863 (2015)

    Article  MathSciNet  Google Scholar 

  30. C. Tapparello, O. Simeone, M. Rossi, Dynamic compression-transmission for energy-harvesting multihop networks with correlated sources. IEEE/ACM Trans. Netw. 22(6), 1729–1741 (2014)

    Article  Google Scholar 

  31. Y.-C. Liang, Y. Zeng, E. Peh, A.T. Hoang, Sensing-throughput tradeoff for cognitive radio networks. IEEE Trans. Wirel. Commun. 7(4), 1326–1337 (2008)

    Article  Google Scholar 

  32. Y. Pei, Y.C. Liang, K.C. Teh, K.H. Li, How much time is needed for wideband spectrum sensing? IEEE Trans. Wirel. Commun. 8(11), 5466–5471 (2009)

    Article  Google Scholar 

  33. I. Kim, D. Kim, Optimal allocation of sensing time between two primary channels in cognitive radio networks. IEEE Commun. Lett. 14(4), 297–299 (2010)

    Article  Google Scholar 

  34. P. Cheng, R. Deng, J. Chen, Energy-efficient cooperative spectrum sensing in sensor-aided cognitive radio networks. IEEE Wirel. Commun. 19(6), 100–105 (2012)

    Article  Google Scholar 

  35. A. Ebrahimzadeh, M. Najimi, S. Andargoli, A. Fallahi, Sensor selection and optimal energy detection threshold for efficient cooperative spectrum sensing. IEEE Trans. Veh. Technol. 64(4), 1565–1577 (2015)

    Article  Google Scholar 

  36. R. Deng, J. Chen, C. Yuen, P. Cheng, Y. Sun, Energy-efficient cooperative spectrum sensing by optimal scheduling in sensor-aided cognitive radio networks. IEEE Trans. Veh. Technol. 61(2), 716–725 (2012)

    Article  Google Scholar 

  37. H. Li, X. Xing, J. Zhu, X. Cheng, K. Li, R. Bie, T. Jing, Utility-based cooperative spectrum sensing scheduling in cognitive radio networks. IEEE Trans. Veh. Technol. (to be published). doi:10.1109/TVT.2016.2532886

  38. Z. Khan, J. Lehtomaki, K. Umebayashi, J. Vartiainen, On the selection of the best detection performance sensors for cognitive radio networks. IEEE Signal Process. Lett. 17(4), 359–362 (2010)

    Article  Google Scholar 

  39. H. Mu, J.K. Tugnait, Joint soft-decision cooperative spectrum sensing and power control in multiband cognitive radios. IEEE Trans. Signal Process. 60(10), 5334–5346 (2012)

    Article  MathSciNet  Google Scholar 

  40. S. Chaudhari, J. Lunden, V. Koivunen, H.V. Poor, Cooperative sensing with imperfect reporting channels: Hard decisions or soft decisions? IEEE Trans. Signal Process. 60(1), 18–28 (2012)

    Article  MathSciNet  Google Scholar 

  41. W. Ejaz, G. Hattab, N. Cherif, M. Ibnkahla, F. Abdelkefi, M. Siala, Cooperative spectrum sensing with heterogeneous devices: hard combining versus soft combining. IEEE Syst. J. (99), 1–12 (2016)

    Google Scholar 

  42. P. Pratibha, K.H. Li, K.C. Teh, Dynamic cooperative sensing-access policy for energy-harvesting cognitive radio systems. IEEE Trans. Veh. Technol. (to be published). doi:10.1109/TVT.2016.2532900

  43. S.K. Nobar, K.A. Mehr, J.M. Niya, RF-powered green cognitive radio networks: architecture and performance analysis. IEEE Commun. Lett. 20(2), 296–299 (2016)

    Article  Google Scholar 

  44. W. Zhang, Y. Guo, H. Liu, Y. Chen, Z. Wang, J. Mitola, Distributed consensus-based weight design for cooperative spectrum sensing. IEEE Trans. Parallel Distrib. Syst. 26(1), 54–64 (2015)

    Article  Google Scholar 

  45. N.I. Miridakis, T.A. Tsiftsis, G.C. Alexandropoulos, M. Debbah, Green cognitive relaying: opportunistically switching between data transmission and energy harvesting. IEEE J. Sel. Areas Commun. (to be published)

    Google Scholar 

  46. L.T. Tan, L.B. Le, Distributed MAC protocol for cognitive radio networks: design, analysis, and optimization. IEEE Trans. Veh. Technol. 60(8), 3990–4003 (2011)

    Article  Google Scholar 

  47. Q. Chen, W.C. Wong, M. Motani, Y.C. Liang, MAC protocol design and performance analysis for random access cognitive radio networks. IEEE J. Sel. Areas Commun. 31(11), 2289–2300 (2013)

    Article  Google Scholar 

  48. G. Shah, O. Akan, Cognitive adaptive medium access control in cognitive radio sensor networks. IEEE Trans. Veh. Technol. 64(2), 757–767 (2015)

    Article  Google Scholar 

  49. S. Anamalamudi, M. Jin, Energy-efficient hybrid CCC-based MAC protocol for cognitive radio ad hoc networks. IEEE Syst. J. 10(1), 358–369 (2016)

    Article  Google Scholar 

  50. M. Ozger, E. Fadel, O.B. Akan, Event-to-sink spectrum-aware clustering in mobile cognitive radio sensor networks. IEEE Trans. Mobile Comput. 15(9), 2221–2233 (2016)

    Article  Google Scholar 

  51. P.T.A. Quang, D.S. Kim, Throughput-aware routing for industrial sensor networks: application to ISA100.11a. IEEE Trans. Ind. Inf. 10(1), 351–363 (2014)

    Article  Google Scholar 

  52. P. Spachos, D. Hantzinakos, Scalable dynamic routing protocol for cognitive radio sensor networks. IEEE Sensors J. 14(7), 2257–2266 (2014)

    Article  Google Scholar 

  53. S. Ping, A. Aijaz, O. Holland, A.H. Aghvami, SACRP: a spectrum aggregation-based cooperative routing protocol for cognitive radio ad-hoc networks. IEEE Trans. Commun. 63(6), 2015–2030 (2015)

    Article  Google Scholar 

  54. G.A. Shah, V.C. Gungor, O.B. Akan, A cross-layer QoS-aware communication framework in cognitive radio sensor networks for smart grid applications. IEEE Trans. Ind. Inf. 9(3), 1477–1485 (2013)

    Article  Google Scholar 

  55. R. Urgaonkar, M. Neely, Opportunistic scheduling with reliability guarantees in cognitive radio networks. IEEE Trans. Mobile Comput. 8(6), 766–777 (2009)

    Article  Google Scholar 

  56. Y. Qin, J. Zheng, X. Wang, H. Luo, H. Yu, X. Tian, X. Gan, Opportunistic scheduling and channel allocation in MC-MR cognitive radio networks. IEEE Trans. Veh. Technol. 63(7), 3351–3368 (2014)

    Article  Google Scholar 

  57. M. Sharma, A. Sahoo, Stochastic model based opportunistic channel access in dynamic spectrum access networks. IEEE Trans. Mobile Comput. 13(7), 1625–1639 (2014)

    Article  Google Scholar 

  58. N. Zhang, H. Liang, N. Cheng, Y. Tang, J. Mark, X. Shen, Dynamic spectrum access in multi-channel cognitive radio networks. IEEE J. Sel. Areas Commun. 32(11), 2053–2064 (2014)

    Article  Google Scholar 

  59. J. Zheng, Y. Cai, N. Lu, Y. Xu, X. Shen, Stochastic game-theoretic spectrum access in distributed and dynamic environment. IEEE Trans. Veh. Technol. 64(10), 4807–4820 (2015)

    Article  Google Scholar 

  60. Y. Xu, J. Wang, Q. Wu, A. Anpalagan, Y.D. Yao, Opportunistic spectrum access in unknown dynamic environment: a game-theoretic stochastic learning solution. IEEE Trans. Wirel. Commun. 11(4), 1380–1391 (2012)

    Article  Google Scholar 

  61. D.B. Rawat, S. Shetty, C. Xin, Stackelberg-game-based dynamic spectrum access in heterogeneous wireless systems. IEEE Syst. J. (to be published). doi:10.1109/JSYST.2014.2347048

  62. Y. Wu, Q. Zhu, J. Huang, D.H.K. Tsang, Revenue sharing based resource allocation for dynamic spectrum access networks. IEEE J. Sel. Areas Commun. 32(11), 2280–2296 (2014)

    Article  Google Scholar 

  63. S. Park, D. Hong, Optimal spectrum access for energy harvesting cognitive radio networks. IEEE Trans. Wirel. Commun. 12(12), 6166–6179 (2013)

    Article  Google Scholar 

  64. S. Park, H. Kim, D. Hong, Cognitive radio networks with energy harvesting. IEEE Trans. Wirel. Commun. 12(3), 1386–1397 (2013)

    Article  Google Scholar 

  65. D. Zhang, Z. Chen, M.K. Awad, N. Zhang, H. Zhou, X.S. Shen, Utility-optimal resource management and allocation algorithm for energy harvesting cognitive radio sensor networks. IEEE J. Sel. Areas Commun. 34(12), 3552–3565 (2016). doi:10.1109/JSAC.2016.2611960

  66. D.T. Hoang, D. Niyato, P. Wang, D.I. Kim, Opportunistic channel access and RF energy harvesting in cognitive radio networks. IEEE J. Sel. Areas Commun. 32(11), 2039–2052 (2014)

    Article  Google Scholar 

  67. D.T. Hoang, D. Niyato, P. Wang, D.I. Kim, Performance optimization for cooperative multiuser cognitive radio networks with RF energy harvesting capability. IEEE Trans. Wirel. Commun. 14(7), 3614–3629 (2015)

    Google Scholar 

  68. S. Lee, R. Zhang, K. Huang, Opportunistic wireless energy harvesting in cognitive radio networks. IEEE Trans. Wirel. Commun. 12(9), 4788–4799 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyu Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Zhang, D., Chen, Z., Zhou, H., Shen, X. (2017). Energy and Spectrum Harvesting in Sensor Networks. In: Resource Management for Energy and Spectrum Harvesting Sensor Networks. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-53771-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53771-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53770-2

  • Online ISBN: 978-3-319-53771-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics