Skip to main content

Regular and Chaotic Transition to Synchrony in a Star Configuration of Phase Oscillators

  • Chapter
  • First Online:
Advances in Dynamics, Patterns, Cognition

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 20))

Abstract

We consider two finite-dimensional models of the phase oscillators in the case of star configuration of coupling. Both systems of equations are reduced to a nonlinearly coupled system of pendulum equations. We prove that the transition from synchronous to asynchronous oscillations occurs via bifurcation of saddle-node equilibrium. In this connection the asynchronous regime can be partially synchronous rotations. We find that the reverse transition from asynchronous to synchronous regime occurs via bifurcation of homoclinic orbit both of the saddle equilibrium point and of the saddle periodic orbit. In the case of homoclinic loop of the saddle point the synchrony appears only from asynchronous mode without partially synchronized rotations. In the case of the homoclinic curve of the saddle periodic orbit the system undergoes a chaotic rotation regime which results in a random return to synchrony.

M.I. Rabinovich is one of the pioneers in the field of synchronization in complex networks of oscillators [1]. We dedicate the present piece of work to Misha’s 75th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arfaimovich, V.S., Verichev, N.N., Rabinovich, M.I.: Stochastic synchronization of oscillations in dissipative systems. Radiophys. Quantum Electron. 29 (9), 795–803 (1986)

    Article  MathSciNet  Google Scholar 

  2. Pikovsky, A.S., Rosenblum, M.G., Kurths, J.: Synchronization - A Universal Concept in Nonlinear Science. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  3. Osipov, G.V., Kurths, J., Zhou, Ch.: Synchronization in Oscillatory Networks. Springer, Berlin, Heidelberg (2007)

    Book  MATH  Google Scholar 

  4. Mosekilde, E., Maistrenko, Yu., Postnov, D.: Chaotic Synchronization. Applications to Living Systems. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  5. Manrubia, S.C., Mikhailov, A.S., Zanette, D.H.: Emergence of Dynamical Order: Synchronization Phenomena in Complex Systems. World Scientific, Singapore (2004)

    Book  MATH  Google Scholar 

  6. Winfree, A.T.: Biological rhythms and the behavior of coupled oscillators. J. Theor. Biol. 16, 15–42 (1967)

    Article  Google Scholar 

  7. Kuramoto, Y.: In: Araki, H. (ed.) Proceedings of International Symposium on Mathematical Problems in Theoretical Physics. Lecture Notes in Physics, vol. 39. Springer, New York (1975)

    Google Scholar 

  8. Kuramoto, Y.: Chemical Oscillations, Waves and Turbulence. Springer, Berlin/Düsseldorf (1984)

    Book  MATH  Google Scholar 

  9. Wiesenfeldt, K., Colet, P., Strogatz, S.: Frequency locking in Josephson junction arrays: connection with the Kuramoto model. Phys. Rev. E 57, 1563–1567 (1998)

    Article  Google Scholar 

  10. Kozyrev, G., Vladimirov, A.G., Mandel, P.: Global coupling with the time delay in an array of semiconductor lasers. Phys. Rev. Lett. 85 (18), 3809–3812 (2000)

    Article  Google Scholar 

  11. Michaels, D.C., Matyas, E.P., Jalife, J.: Mechanisms of sinoatrial pacemaker synchronization a new hypothesis. Circ. Res. 61 (5), 704–714 (1987)

    Article  Google Scholar 

  12. Brown, E., Holmes, P., Moehlis, J.: Globally coupled oscillator networks. In: Kaplan, E., Marsden, J.E., Sreenivasan, K.R. (eds.) Perspectives and Problems in Nonlinear Science: A Celebratory Volume in Honor of Larry Sirovich, pp. 183–215. Springer, Berlin (2003)

    Chapter  Google Scholar 

  13. Kopell, N., Ermentrout, G.B.: Coupled oscillators and the design of central pattern generators. Math. Biosci. 90, 87–109 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Neda, Z., Ravasz, E., Vicsek, T., Brecht, Y., Barabasi, A.-L.: Physics of the rhythmic applause. Phys. Rev. E 61, 6987–6992 (2000)

    Article  Google Scholar 

  15. Strogatz, S.H., Abrams, D.M., McRobie, A., Eckhardt, B., Ott, E.: Theoretical mechanics: crowd synchrony on the Millenium Bridge. Nature 438 (70640), 43–44 (2005)

    Article  Google Scholar 

  16. York, R.A., Compton, R.C.: Quasi-optical power combining using mutually synchronized oscillator arrays. IEEE Trans. Autom. Control 57 (4), 920–935 (2012)

    Article  Google Scholar 

  17. Dorfler, F., Bullo, F.: Synchronization in complex networks of phase oscillators: a survey. Automatica 50 (6), 1539–1564 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Acebron, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Modern Phys. 77 (1), 137–185 (2005)

    Article  Google Scholar 

  19. Belykh, V.N., Petrov, V.S., Osipov, G.V.: Dynamics of the finite-dimensional Kuramoto model: global and cluster synchronization. Regul. Chaotic Dyn. 20 (1), 37–48 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lindsey, W.C.: Synchronization Systems in Communication and Control. Pearson Education, Upper Saddle River, NJ (1972)

    Google Scholar 

  21. Shalfeev, V.D., Matrosov, V.V.: Nonlinear Dynamics of the Phase Synchronization Systems. Publishing House of the Nizhny Novgorod State University, N. Novgorod (2013) (in Russian)

    Google Scholar 

  22. Arfaimovich, V.S., Nekorkin, V.I., Osipov, G.V., Shalfeev, V.D.: Stability, Structures and Chaos in Nonlinear Synchronization Networks. World Scientific, Singapore (1994)

    Google Scholar 

  23. Frasca, M., Bergner, A., Kurths, J., Fortuna, L.: Bifurcations in a star-like network of Stuart-Landau oscillators. Int. J. Bifurcation Chaos 22 (7), 1250173 (2012)

    Article  MATH  Google Scholar 

  24. Kazanovich, Y., Burylko, O., Borisyuk, R.: Competition for synchronization in a phase oscillator system. Physica D 261, 114–124 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tanaka, H.A., Lichtenberg, A.J., Oishi, S.: First order phase transition resulting from finite inertia in coupled oscillator systems. Phys. Rev. Lett. 78, 2104 (1997)

    Article  Google Scholar 

  26. Tanaka, H.A., Lichtenberg, A.J., Oishi, S.: Self-synchronization of coupled oscillators with hysteretic responses. Physica D 100, 279 (1997)

    Article  MATH  Google Scholar 

  27. Pecora, L., Carrol, T.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Belykh, V.N., Belykh, I.V., Hasler, M.: Connection graph stability method for synchronized coupled chaotic systems. Physica D 195, 159–187 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Belykh, V.N., Osipov, G.V., Petrov, V.S., Suykens, J., Vandewalle J.: Cluster synchronization in oscillatory networks. Chaos 13, 037106 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tricomi, F.: Integrazione di un’ equazione differenziale presentatasi in elettrotecnica. Annali della R. Scuola Normale Superiore di Pisa Ser. 11 2, 1 (1933)

    Google Scholar 

  31. Urabe, M.: The least upper bound of a damping coefficient ensuring the existence of a periodic motion of a pendulum under constant torque. J. Sci. Hiroshima Univ. Ser. A 18, 379–389 (1955)

    MathSciNet  MATH  Google Scholar 

  32. Belykh, V.N., Pedersen, N., Soerenses, O.: Shunted-Josephson-junction model. I. The autonomous case. Phys. Rev. B 16, 4853 (1977)

    Google Scholar 

  33. Belykh, V.N., Pedersen, N., Soerenses, O.: Shunted-Josephson-junction model. II. The nonautonomous case. Phys. Rev. B 16, 4860 (1977)

    Google Scholar 

  34. Olmi, S., Navas, A., Boccaletti, S., Torcini, A.: Hysteretic transitions in the Kuramoto model with inertia. Phys. Rev. E 90, 042905 (2014)

    Article  Google Scholar 

  35. Belykh, V.N.: Homoclinic and heteroclinic linkages in concrete systems: nonlocal analysis and model maps. Adv. Math. Sci., Amer. Math. Soc. Transl. 2 (200), 51–62 (2000)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the RSF (Project No. 14-12-00811) (Sections 1, 2) and by the RFBR (project 15-01-08776) (Section 3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir N. Belykh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Belykh, V.N., Bolotov, M.I., Osipov, G.V. (2017). Regular and Chaotic Transition to Synchrony in a Star Configuration of Phase Oscillators. In: Aranson, I., Pikovsky, A., Rulkov, N., Tsimring, L. (eds) Advances in Dynamics, Patterns, Cognition. Nonlinear Systems and Complexity, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-53673-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53673-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53672-9

  • Online ISBN: 978-3-319-53673-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics