Skip to main content

The Variational Principles of Cognition

  • Chapter
  • First Online:
Advances in Dynamics, Patterns, Cognition

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 20))

Abstract

This chapter provides a theoretical perspective on a dynamics, from the perspective of the free-energy principle. This variational principle offers a natural explanation for neuronal activity that is formulated in terms of dynamical systems and attracting sets. We will see that the free-energy principle emerges when we consider the ensemble dynamics of any pattern forming, self-organizing system. When we look closely what this principle implies for the behavior of systems like the brain, one finds a fairly simple explanation for active inference and the Bayesian brain hypothesis. Within the Bayesian brain framework, the ensuing dynamics can be separated, in a principled way, into those serving perceptual inference, learning and behavior. Dynamics here are central; not only to an understanding the nature of self-organizing systems but also to explain the adaptive nature of neuronal dynamics and plasticity in terms of optimization. The special focus of this chapter is on the pre-eminent role of heteroclinic cycles in providing deep and dynamic (generative) models of the sensorium; particularly, the sensations that we generate ourselves through movement. In what follows, we will briefly rehearse the basic theory and illustrate its implications using simulations of action (handwriting)—and its observation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, R.A., Shipp, S., Friston, K.J.: Predictions not commands: active inference in the motor system. Brain Struct. Funct. 218, 611–643 (2013)

    Article  Google Scholar 

  2. Afraimovich, V., Tristan, I., Huerta, R., Rabinovich, M.I.: Winnerless competition principle and prediction of the transient dynamics in a Lotka-Volterra model. Chaos 18, 043103 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ashby, W.R.: Principles of the self-organizing dynamic system. J. Gen. Psychol. 37, 125–128 (1947)

    Article  Google Scholar 

  4. Bastos, A.M., Usrey, W.M., Adams, R.A., Mangun, G.R., Fries, P., Friston, K.J.: Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012)

    Article  Google Scholar 

  5. Battaglia, F.P., Sutherland, G.R., McNaughton, B.L.: Local sensory cues and place cell directionality: additional evidence of prospective coding in the hippocampus. J. Neurosci. 24 (19), 4541–50 (2004)

    Article  Google Scholar 

  6. Bernard, C.: Lectures on the Phenomena Common to Animals and Plants, trans Hoff, H.E., Guillemin, R., Guillemin, L. Springfield, IL: Charles C Thomas (1974). ISBN 978–0398028572

    Google Scholar 

  7. Bick, C., Rabinovich, M.I.: Dynamical origin of the effective storage capacity in the brain’s working memory. Phys. Rev. Lett. 103, 218101 (2009)

    Article  Google Scholar 

  8. Burgess, N., Barry, C., O’Keefe, J.: An oscillatory interference model of grid cell firing. Hippocampus 17 (9), 801–812 (2007)

    Article  Google Scholar 

  9. Camerer, C.F.: Behavioural studies of strategic thinking in games. Trends Cogn. Sci. 7 (5), 225–231 (2003)

    Article  Google Scholar 

  10. Carhart-Harris, R.L., Friston, K.J.: The default-mode, ego-functions and free-energy: a neurobiological account of Freudian ideas. Brain 133 (Pt 4), 1265–83 (2010)

    Article  Google Scholar 

  11. Clark, A.: The many faces of precision. Front Psychol. 4, 270 (2013)

    Google Scholar 

  12. Clark, A.: Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36, 181–204 (2013)

    Article  Google Scholar 

  13. Conant, R.C., Ashby, W.R.: Every good regulator of a system must be a model of that system. Int. J. Syst. Sci. 1, 89–97 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  14. Daw, N.D., Doya, K.: The computational neurobiology of learning and reward. Curr. Opin. Neurobiol. 16 (2), 199–204 (2006)

    Article  Google Scholar 

  15. Dayan, P., Hinton, G.E., Neal, R.M.: The Helmholtz machine. Neural Comput. 7, 889–904 (1995)

    Article  Google Scholar 

  16. Di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., Rizzolatti, G.: Understanding motor events: a neurophysiological study. Exp. Brain Res. 91, 176–80 (1992)

    Article  Google Scholar 

  17. Dragoi, G., BuzsĂ¡ki, G.: Temporal encoding of place sequences by hippocampal cell assemblies. Neuron 50 (1), 145–57 (2006)

    Article  Google Scholar 

  18. Evans, D.J.: A non-equilibrium free-energy theorem for deterministic systems. Mol. Phys. 101, 15551–1554 (2003)

    Article  Google Scholar 

  19. Feldman, H., Friston, K.J.: Attention, uncertainty, and free-energy. Front. Hum. Neurosci. 4, 215 (2010)

    Article  Google Scholar 

  20. Feynman, R.P.: Statistical Mechanics. Benjamin, Reading, MA (1972)

    Google Scholar 

  21. Fogassi, L., Ferrari, P.F., Gesierich, B., Rozzi, S., Chersi, F., Rizzolatti, G.: Parietal lobe: from action organization to intention understanding. Science 308, 662–667 (2005)

    Article  Google Scholar 

  22. Friston, K.J.: A theory of cortical responses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 815–36 (2005)

    Article  Google Scholar 

  23. Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11 (2), 127–38 (2010)

    Article  Google Scholar 

  24. Friston, K.: Life as we know it. J. R. Soc. Interface 10, 20130475 (2013)

    Article  Google Scholar 

  25. Friston, K., Daunizeau, J., Kiebel, S.: Active inference or reinforcement learning? PLoS One 4 (7), e6421 (2009)

    Article  Google Scholar 

  26. Friston, K.J., Daunizeau, J., Kilner, J., Kiebel, S.J.: Action and behavior: a free-energy formulation. Biol Cybern. 102 (3), 227–60 (2010)

    Article  Google Scholar 

  27. Gallese, V., Goldman, A.: Mirror-neurons and the simulation theory of mind reading. Trends Cogn. Sci. 2, 493–501 (1998)

    Article  Google Scholar 

  28. Geisler, C., Diba, K., Pastalkova, E., Mizuseki, K., Royer, S., BuzsĂ¡ki, G.: Temporal delays among place cells determine the frequency of population theta oscillations in the hippocampus. Proc. Natl. Acad. Sci. USA 107 (17), 7957–62 (2010)

    Article  Google Scholar 

  29. Gregory, R.L.: Perceptions as hypotheses. Phil. Trans. R. Soc. Lond. B 290, 181–197 (1980)

    Article  Google Scholar 

  30. Grist, M.: Changing the Subject. RSA. www.thesocialbrain.wordpress.com, pp. 74–80 (2010)

  31. Haken, H.: Synergetics: an introduction. In: Non-equilibrium Phase Transition and Self-Organization in Physics, Chemistry and Biology. 3rd edn. Springer, New York (1983)

    Google Scholar 

  32. von Helmholtz, H.: Concerning the perceptions in general. In: Treatise on Physiological Optics, vol. III, 3rd edn. (translated by J. P. C. Southall 1925 Opt. Soc. Am. Section 26, reprinted New York: Dover, 1962) (1866)

    Google Scholar 

  33. Hinton, G.E., van Cramp, D.: Keeping neural networks simple by minimizing the description length of weights. In: Proceedings of COLT-93, pp. 5–13 (1993)

    Google Scholar 

  34. Hohwy, J.: The Predictive Mind. Oxford University Press, Oxford (2013)

    Book  Google Scholar 

  35. Hohwy, J.: The self-evidencing brain. Noûs, n/a-n/a (2014)

    Google Scholar 

  36. Huang, G.: Is this a unified theory of the brain? New Scientist. Magazine issue 2658, 23 May 2008

    Google Scholar 

  37. Kauffman, S.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, Oxford (1993)

    Google Scholar 

  38. Kersten, D., Mamassian, P., Yuille, A.: Object perception as Bayesian inference. Annu. Rev. Psychol. 55, 271–304 (2004)

    Article  Google Scholar 

  39. Kiebel, S.J., von Kriegstein, K., Daunizeau, J., Friston, K.J.: Recognizing sequences of sequences. PLoS Comput. Biol. 5 (8), e1000464 (2009)

    Article  MathSciNet  Google Scholar 

  40. Knill, D.C., Pouget, A.: The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci. 27 (12), 712–9 (2004)

    Article  Google Scholar 

  41. Kropotova, D., Vetrovb, D.: General Solutions for Information-Based and Bayesian Approaches to Model Selection in Linear Regression and Their Equivalence. Pattern Recognit Image Anal. 19 (3), 447–455 (2009)

    Article  Google Scholar 

  42. Lifshitz, E.M., Pitaevskii, L.P.: Physical Kinetics. Course of Theoretical Physics, vol. 10, 3rd edn. Pergamon, London (1981). ISBN 0-08-026480-8 ISBN 0-7506-2635-6

    Google Scholar 

  43. MacKay, D.J.C.: Free-energy minimization algorithm for decoding and cryptoanalysis. Electron. Lett. 31, 445–447 (1995)

    Article  Google Scholar 

  44. Mumford, D.: On the computational architecture of the neocortex. II. The role of cortico-cortical loops. Biol. Cybern. 66, 241–51 (1992)

    Google Scholar 

  45. Neal, R.M., Hinton, G.E.: A view of the EM algorithm that justifies incremental, sparse, and other variants’. In: Jordan, M.I. (ed.) Learning in Graphical Models, pp. 355–368. Kluwer Academic Publishers, Dordrecht (1998)

    Chapter  Google Scholar 

  46. Nicolis, G., Prigogine, I.: Self-organization in non-equilibrium systems, p24. Wiley, New York (1977)

    MATH  Google Scholar 

  47. O’Keefe, J.: Do hippocampal pyramidal cells signal non-spatial as well as spatial information? Hippocampus 9 (4), 352–64 (1999)

    Article  Google Scholar 

  48. Rabinovich, M., Huerta, R., Laurent, G.: Neuroscience. Transient dynamics for neural processing. Science 321, 48–50 (2008)

    Google Scholar 

  49. Rabinovich, M.I., Afraimovich, V.S., Varona, P.: Heteroclinic binding. Dyn. Syst. Int. J. 25, 433–442 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Rabinovich, M.I., Afraimovich, V.S., Bick, V., Varona, P.: Information flow dynamics in the brain. Phys. Life Rev. 9 (1), 51–73 (2012)

    Article  Google Scholar 

  51. Rao, R.P., Ballard, D.H.: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive field effects. Nature Neurosci. 2, 79–87 (1998)

    Article  Google Scholar 

  52. Rescorla, R.A., Wagner, A.R.: A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. In: Black, A.H., Prokasy, W.F. (eds.) Classical Conditioning II: Current Research and Theory, pp. 64–99. Appleton Century Crofts, New York (1972)

    Google Scholar 

  53. Rizzolatti, G., Craighero, L.: The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–92 (2004).

    Article  Google Scholar 

  54. Sella, G., Hirsh, A.E.: The application of statistical physics to evolutionary biology. Proc. Natl. Acad. Sci. USA 102 (27), 9541–6 (2005)

    Article  Google Scholar 

  55. Sutton, R.S., Barto, A.G.: Toward a modern theory of adaptive networks: expectation and prediction. Psychol. Rev. 88 (2), 135–70 (1981)

    Article  Google Scholar 

  56. Thornton, C.: Some puzzles relating to the free-energy principle: comment on Friston. Trends Cogn. Sci. 14 (2), 53–4; author reply 54–5; (2010)

    Google Scholar 

  57. Tsodyks, M.: Attractor neural network models of spatial maps in hippocampus. Hippocampus 9 (4), 481–9 (1999)

    Article  Google Scholar 

  58. Varona, P., Levi, R., Arshavsky, Y.I., Rabinovich, M.I., Selverston, A.I.: Competing sensory neurons and motor rhythm coordination. Neurocomputing 58, 549–554 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

I am indebted to Mikhail Rabinovich for his guidance and insights into winnerless competition and its formulation in terms of generalized Lotka–Volterra systems that underly the work presented in this chapter. The Wellcome Trust funded this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Friston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Friston, K. (2017). The Variational Principles of Cognition. In: Aranson, I., Pikovsky, A., Rulkov, N., Tsimring, L. (eds) Advances in Dynamics, Patterns, Cognition. Nonlinear Systems and Complexity, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-53673-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53673-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53672-9

  • Online ISBN: 978-3-319-53673-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics