We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Concepts of Probability and Statistics | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Concepts of Probability and Statistics

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Fading and Shadowing in Wireless Systems

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • 913 Accesses

Abstract

The analysis of communication systems involves the study of the effects of noise on the ability to transmit information. Additionally, the presence of fading and shadowing in wireless channels results in signal strength fluctuations. All these factors demand an understanding of the properties of random variables. We review the concepts of random variables in detail. In the updated sections (second edition), parameter estimation techniques are presented within the context of modeling the statistical fluctuations. This is followed by the study of statistical testing for the validation of models for fading and shadowing. Receiver operating characteristics are discussed within the context of cognitive radio. A detailed exposition of Laplace and Mellin transforms for application in wireless is presented. Matlab scripts relevant to the newer sections are provided along with Maple scripts if necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalo, V., & Zhang, J. (1999). On the effect of cochannel interference on average error rates in Nakagami-fading channels. IEEE Communications Letters, 3(5), 136–138.

    Article  Google Scholar 

  • Aalo, V. A., & Piboongungon T. (2005). On the multivariate generalized gamma distribution with exponential correlation. In Global Telecommunications Conference, 2005. GLOBECOM ’05 (pp. 3–5). IEEE.

    Google Scholar 

  • Abate, J. (1995). Numerical inversion of Laplace transforms of probability distributions. ORSA Journal on Computing, 7, 36–43.

    Article  MATH  Google Scholar 

  • Abdi, A., & Kaveh, M. (1998). K distribution: An appropriate substitute for Rayleigh-lognormal distribution in fading-shadowing wireless channels. Electronics Letters, 34(9), 851–852.

    Article  Google Scholar 

  • Abdi, A., & Kaveh M. (1999). On the utility of gamma PDF in modeling shadow fading (slow fading). In 1999 I.E. 49th Vehicular Technology Conference (pp. 2308–2312).

    Google Scholar 

  • Abramowitz, M., & Segun, I. A. (Eds.). (1972). Handbook of mathematical functions with formulas, graphs, and mathematical tables. New York: Dover Publications.

    MATH  Google Scholar 

  • Abu-Dayya, A. A., & Beaulieu, N. C. (1994). Outage probabilities in the presence of correlated lognormal interferers. IEEE Transactions on Vehicular Technology, 43(1), 164–173.

    Article  Google Scholar 

  • Abu-Salih, M. (1983). Distributions of the product and the quotient of power-function random variables. Arabian Journal of Mathematics, 4, 1–2.

    MathSciNet  MATH  Google Scholar 

  • Adamchik, V. (1995). The evaluation of integrals of Bessel functions via G-function identities. Journal of Computational and Applied Mathematics, 64(3), 283–290.

    Article  MathSciNet  MATH  Google Scholar 

  • Ahmed, S., Yang, L.-L., & Hanzo, L. (2011). Probability distributions of products of Rayleigh and Nakagami-m variables using Mellin transform. In 2011 I.E. International Conference on Communications (ICC) (pp. 1–5).

    Google Scholar 

  • Alouini, M., & Simon, M. (2003). Dual diversity over correlated log-normal fading channels. IEEE Transactions on Communications, 50(12), 1946–1959.

    Article  Google Scholar 

  • Alouini, M. S., & Simon, M. K. (1999). Performance of coherent receivers with hybrid SC/MRC over Nakagami-m fading channels. IEEE Transactions on Vehicular Technology, 48(4), 1155–1164.

    Article  Google Scholar 

  • Alouini, M. S., & Simon, M. K. (2000). An MGF-based performance analysis of generalized selection combining over Rayleigh fading channels. IEEE Transactions on Communications, 48(3), 401–415.

    Article  Google Scholar 

  • Alouini, M. S., & Simon, M. K. (2006). Performance of generalized selection combining over Weibull fading channels. Wireless Communications and Mobile Computing, 6(8), 1077–1084.

    Article  Google Scholar 

  • Alouini, M. S., Abdi, A., & Kaveh, M. (2001). Sum of gamma variates and performance of wireless communication systems over Nakagami-fading channels. IEEE Transactions on Vehicular Technology, 50(6), 1471–1480.

    Article  Google Scholar 

  • Anastassopoulos, V., Lampropoulos, G. A., Drosopoulos, A., & Rey, N. (1999). High resolution radar clutter statistics. IEEE Transactions on Aerospace and Electronic Systems, 35(1), 43–60.

    Article  Google Scholar 

  • Andersen, J. B. (2002). Statistical distributions in mobile communications using multiple scattering. Presented at the 27th URSI General Assembly, Maastricht, Netherlands.

    Google Scholar 

  • Annamalai, A., Tellambura, C., & Bhargava, V. K. (2005). A general method for calculating error probabilities over fading channels. IEEE Transactions on Communications, 53(5), 841–852.

    Google Scholar 

  • Annamalai, A., Deora, G., & Tellambura, C. (2006). Analysis of generalized selection diversity systems in wireless channels. IEEE Transactions on Vehicular Technology, 55(6), 1765–1775.

    Article  Google Scholar 

  • Atapattu, S., Tellambura, C., & Jiang, H. (2010). Representation of composite fading and shadowing distributions by using mixtures of gamma distributions. In Wireless Communications and Networking Conference (WCNC) in Sydney, 18–21 April 2010 (pp. 1–5). IEEE.

    Google Scholar 

  • Atapattu, S., Tellambura, C., & Jiang, H. (2010b). Analysis of area under the ROC curve of energy detection. IEEE Transactions on Wireless Communications, 9, 1216–1225.

    Article  Google Scholar 

  • Atapattu, S., Tellambura, C., & Jiang, H. (2011). A mixture gamma distribution to model the SNR of wireless channels. IEEE Transactions on Wireless Communications, 10(12), 4193–4203.

    Article  Google Scholar 

  • Beaulieu, N., & Xie, Q. (2004). An optimal lognormal approximation to lognormal sum distributions. IEEE Transactions on Vehicular Technology, 53(2), 479–489.

    Article  Google Scholar 

  • Beaulieu, N. C. (1990). An infinite series for the computation of the complementary probability distribution function of a sum of independent random variables and its application to the sum of Rayleigh random variables. IEEE Transactions on Communications, 38(9), 1463–1474.

    Article  Google Scholar 

  • Beaulieu, N. C., Abu-Dayya, A. A., & McLane, P. J. (1995). Estimating the distribution of a sum of independent lognormal random variables. IEEE Transactions on Communications, 43(12), 2869.

    Article  Google Scholar 

  • Benedetto, S., & Biglieri, E. (1999). Principles of digital transmission: With wireless applications. New York: Kluwer Academic/Plenum Press.

    MATH  Google Scholar 

  • Bithas, P. S., Sagias, N. C., & Mathiopoulos, P. T. (2007). Dual diversity over correlated Ricean fading channels. Journal of Communications and Networks, 9(1), 67–74.

    Article  Google Scholar 

  • Bithas, P. S., Sagias, N. C., Mathiopoulos, P. T., Karagiannidis, G. K., & Rontogiannis, A. A. (2006). On the performance analysis of digital communications over generalized-K fading channels. IEEE Communications Letters, 10(5), 353–355.

    Article  Google Scholar 

  • Block, H. W., & Savits, T. H. (1980). Laplace transforms for classes of life distributions. The Annals of Probability, 8(3), 465–474.

    Article  MathSciNet  MATH  Google Scholar 

  • Blumenson, L. E., & Miller, K. S. (1963). Properties of generalized Rayleigh distributions. The Annals of Mathematical Statistics, 34(3), 903–910.

    Article  MathSciNet  MATH  Google Scholar 

  • Bowman, K. O., & Shenton, L. R. (2006). Maximum likelihood estimators for normal and gamma mixtures. Far East Journal of Theoretical Statistics, 20, 217–240.

    MathSciNet  MATH  Google Scholar 

  • Brennan, D. G. (1959). Linear diversity combining techniques. Proceedings of the IRE, 47(6), 1075–1102.

    Article  Google Scholar 

  • Bryson, B. C. (1974). Heavy tailed distributions: Properties and tests. Technometrics, 16(1), 61–68.

    Article  MathSciNet  MATH  Google Scholar 

  • Büyükçorak, S., Vural, M., & Kurt, G. K. (2015). Lognormal mixture shadowing. IEEE Transactions on Vehicular Technology, 64(10), 4386–4398.

    Article  Google Scholar 

  • Cardieri, P., & Rappaport, T. (2001). Statistical analysis of co-channel interference in wireless communications systems. Wireless Communications and Mobile Computing, 1(1), 111–121.

    Article  Google Scholar 

  • Cardieri, P., & Yacoub, M. D. (2005). Simple accurate lognormal approximation to lognormal sums. Electronics Letters, 41(18), 1016–1017.

    Article  Google Scholar 

  • Carter, B., & Springer, M. (1977). The distribution of products, quotients and powers of independent H-function variates. SIAM Journal on Applied Mathematics, 33(4), 542–558.

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng, J., & Beaulieu, N. C. (2001). Maximum likelihood based estimation of the Nakagami m-parameter. IEEE Communications Letters, 5, 101–103.

    Article  Google Scholar 

  • Cheng, J., Tellambura, C., & Beaulieu, N. C. (2004). Performance of digital linear modulations on Weibull slow-fading channels. IEEE Transactions on Communications, 52(8), 1265–1268.

    Article  Google Scholar 

  • Chiani, M. (1999). Integral representation and bounds for Marcum Q-function. Electronics Letters, 35(6), 445–446.

    Article  Google Scholar 

  • Cooper, G. R., & McGillem, C. D. (1986). Modern communications and spread spectrum. New York: McGraw-Hill.

    Google Scholar 

  • Cotton, S. L., & Scanlon, W. G. (2007). Higher order statistics for lognormal small-scale fading in mobile radio channels. IEEE Antennas and Wireless Propagation Letters, 6, 540–543.

    Article  Google Scholar 

  • Couch, L. W. (2007). Digital and analog communication systems. Upper Saddle River, NJ: Pearson/Prentice Hall.

    Google Scholar 

  • Coulson, A. J., Williamson, A. G., & Vaughan, R. G. (1998a). Improved fading distribution for mobile radio. IEE Proceedings-Communications, 145(3), 197–202.

    Article  Google Scholar 

  • Coulson, A. J., Williamson, A. G., & Vaughan, R. G. (1998b). A statistical basis for lognormal shadowing effects in multipath fading channels. IEEE Transactions on Communications, 46(4), 494–502.

    Article  Google Scholar 

  • da Costa, B. D., & Yacoub, M. D. (2008). Moment generating functions of generalized fading distributions and applications. IEEE Communications Letters, 12(2), 112–114.

    Article  Google Scholar 

  • da Silva, V. R., & Yongacoglu, A. (2015, November). EM algorithm on the approximation of arbitrary PDFs by Gaussian, gamma and lognormal mixture distributions. In 2015 7th IEEE Latin-American Conference on Communications (LATINCOM) (pp. 1–6). IEEE.

    Google Scholar 

  • Davenport, J. W., Bezdek, J. C., & Hathaway, R. J. (1988). Parameter estimation for finite mixture distributions. Computers & Mathematcs with Applications, 15(10), 819–828.

    Article  MathSciNet  MATH  Google Scholar 

  • Dogandzic, A., & Jin, J. (2004). Maximum likelihood estimation of statistical properties of composite gamma-lognormal fading channels. IEEE Transactions on Signal Processing, 52, 2940–2945.

    Article  MathSciNet  Google Scholar 

  • Epstein, B. (1948). Some applications of Mellin transform in statistics. Annals of Mathematical Statistics, 19(3), 370–379.

    Article  MathSciNet  MATH  Google Scholar 

  • Erdelyi, A. (1953). Table of integral transforms. New York: McGraw-Hill.

    Google Scholar 

  • Evans, M., Hastings, N. A. J., & Peacock, J. B. (2000). Statistical distributions. New York: Wiley.

    MATH  Google Scholar 

  • Frery, A. C., Muller, H. J., Yanasse, C. D. C. F., & Sant’Anna, S. J. S. (1997). A model for extremely heterogeneous clutter. IEEE Transactions on Geoscience and Remote Sensing, 35(3), 648–659.

    Google Scholar 

  • Gagliardi, R. M. (1988). Introduction to communications engineering. New York: Wiley.

    Google Scholar 

  • Gallager, R. G. (2008). Principles of digital communication. Cambridge; New York: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Gaur, S., & Annamalai, A. (2003). Some integrals involving the Qm(a√x, b√x) with application to error probability analysis of diversity receivers. IEEE Transactions on Vehicular Technology, 52(6), 1568–1575.

    Article  Google Scholar 

  • Goldsmith, A. (2005). Wireless communications. New York: Cambridge University Press.

    Book  Google Scholar 

  • Goodman, J. W. (1985). Statistical optics. New York: Wiley.

    Google Scholar 

  • Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series and products. Oxford: Academic.

    MATH  Google Scholar 

  • Griffiths, J., & McGeehan, J. P. (1982). Inter relationship between some statistical distributions used in radio-wave propagation. IEE Proceedings F Communications, Radar and Signal Processing, 129(6), 411–417.

    Article  Google Scholar 

  • Gupta, R. D., & Kundu, D. (1999). Generalized exponential distributions. Australian & New Zealand Journal of Statistics, 41(2), 173–188.

    Article  MathSciNet  MATH  Google Scholar 

  • Hanley, J. A., & McNeil, B. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, 29–36.

    Article  Google Scholar 

  • Hansen, F., & Meno, F. I. (1977). Mobile fading; Rayleigh and lognormal superimposed. IEEE Transactions on Vehicular Technology, 26(4), 332–335.

    Article  Google Scholar 

  • Haykin, S. S. (2001). Digital communications. New York: Wiley.

    Google Scholar 

  • Helstrom, C. W. (1968). Statistical theory of signal detection. Oxford; New York: Pergamon Press.

    MATH  Google Scholar 

  • Helstrom, C. W. (1991). Probability and stochastic processes for engineers. New York: Macmillan.

    Google Scholar 

  • Helstrom, C. W. (1992). Computing the generalized Marcum Q function. IEEE Transactions on Information Theory, 38(4), 1422–1428.

    Article  Google Scholar 

  • Helstrom, C. W. (1998). Approximate inversion of Marcum’s Q-function. IEEE Transactions on Aerospace and Electronic Systems, 34(1), 317–319.

    Article  Google Scholar 

  • Holm, H., & Alouini, M. S. (2004). Sum and difference of two squared correlated Nakagami variates in connection with the McKay distribution. IEEE Transactions on Communications, 52(8), 1367–1376.

    Article  Google Scholar 

  • Hudson, J. E. (1996). A lognormal fading model and cellular radio performance. In Global Telecommunications Conference, 1996. GLOBECOM ‘96. Communications: The Key to Global Prosperity (Vol. 2, pp. 1187–1191).

    Google Scholar 

  • Iskander, D. R., Zoubir, A. M., & Boashash, B. (1999). A method for estimating the parameters of the K distribution. IEEE Transactions on Signal Processing, 47(4), 1147–1151.

    Article  Google Scholar 

  • Iskander, R. D., & Zoubir, A. M. (1996). On coherent modeling of non-Gaussian radar clutter. In Proceedings of the 8th IEEE Signal Processing Workshop on statistical Signal and Array Processing (pp. 226–229).

    Google Scholar 

  • Ismail, M. H., & Matalgah, M. M. (2006). On the use of Pade approximation for performance evaluation of maximal ratio combining diversity over Weibull fading channels. EURASIP Journal on Wireless Communications and Networking, 6, 62–66.

    MATH  Google Scholar 

  • Jakeman, E., & Tough, R. (1987). Generalized K distribution: A statistical model for weak scattering. Journal of the Optical Society of America A, 4(9), 1764–1772.

    Article  Google Scholar 

  • Jakes, W. C. (1994). Microwave mobile communications. Piscataway, NJ: IEEE Press.

    Book  Google Scholar 

  • Joughin, I. R., Percival, D. B., & Winebrenner, D. P. (1993). Maximum likelihood estimation of K distribution parameters for the SAR data. IEEE Transactions on Geoscience and Remote Sensing, 51, 989–999.

    Article  Google Scholar 

  • Jung, J., Lee, S. R., Park, H., Lee, S., & Lee, I. (2014). Capacity and error probability analysis of diversity reception schemes over generalized-fading channels using a mixture gamma distribution. IEEE Transactions on Wireless Communications, 13(9), 4721–4730.

    Article  Google Scholar 

  • Kabe, D. G. (1958). Some applications of Meijer-G functions to distribution problems in statistics. Biometrika, 45(3/4), 578–580.

    Article  MATH  Google Scholar 

  • Karadimas, P., & Kotsopoulos, S. A. (2008). A generalized modified Suzuki model with sectored and inhomogeneous diffuse scattering component. Wireless Personal Communications, 47(4), 449–469.

    Article  Google Scholar 

  • Karadimas, P., & Kotsopoulos, S. A. (2010). A modified loo model with partially blocked and three dimensional multipath scattering: Analysis, simulation and validation. Wireless Personal Communications, 53(4), 503–528.

    Article  Google Scholar 

  • Karagiannidis, G. K., Zogas, D. A., & Kotsopoulos, S. A. (2003a). Performance analysis of triple selection diversity over exponentially correlated Nakagami-m fading channels. IEEE Transactions on Communications, 51(8), 1245–1248.

    Article  Google Scholar 

  • Karagiannidis, G. K., Zogas, D. A., & Kotsopoulos, S. A. (2003b). On the multivariate Nakagami-m distribution with exponential correlation. IEEE Transactions on Communications, 51(8), 1240–1244.

    Article  Google Scholar 

  • Karagiannidis, G. K., Sagias, N. C., & Mathiopoulos, P. T. (2007). N*Nakagami: A novel statistical model for cascaded fading channels. IEEE Transactions on Communications, 55(8), 1453–1458.

    Google Scholar 

  • Karagiannidis, G. K., Sagias, N. C., & Tsiftsis, T. A. (2006). Closed-form statistics for the sum of squared Nakagami-m variates and its applications. IEEE Transactions on Communications, 54(8), 1353–1359.

    Article  Google Scholar 

  • Karmeshu, J., & Agrawal, R. (2007). On efficacy of Rayleigh-inverse Gaussian distribution over K-distribution for wireless fading channels. Wireless Communications and Mobile Computing, 7(1), 1–7.

    Article  Google Scholar 

  • Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795.

    Article  MathSciNet  MATH  Google Scholar 

  • Kilicman, A., & Ariffin, M. R. K. (2002). A note on the convolution in the Mellin sense with generalized functions. Bulletin of the Malaysian Mathematical Sciences Society (Second Series), 25, 93–100.

    MathSciNet  MATH  Google Scholar 

  • Korn, I., & Foneska, J. P. (2001). M-CPM with MRC diversity in Rician-, Hoyt-, and Nakagami-fading channels. IEEE Transactions on Vehicular Technology, 50(4), 1182–1118.

    Article  Google Scholar 

  • Kostic, I. M. (2005). Analytical approach to performance analysis for channel subject to shadowing and fading. IEE Proceedings Communications, 152(6), 821–827.

    Article  Google Scholar 

  • Kotz, S., & Adams, J. (1964). Distribution of sum of identically distributed exponentially correlated gamma-variables. The Annals of Mathematical Statistics, 35(1), 277–283.

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar, V., & Shukla, G. (2010). Maximum likelihood estimation in generalized gamma type model. Journal of Reliability and Statistical Studies, 3(1), 43–51.

    MathSciNet  MATH  Google Scholar 

  • Kundu, K., & Raqab, M. Z. (2005). Generalized Rayleigh distribution: Different methods of estimations. Computational Statistics and Data Analysis, 49, 187–200.

    Article  MathSciNet  MATH  Google Scholar 

  • Lam, C. L. J., & Le-Ngoc, T. (2006). Estimation of typical sum of lognormal random variables using log shifted gamma approximation. IEEE Communications Letters, 10(4), 234–223.

    Article  Google Scholar 

  • Lam, C. L. J., & Tho, L.-N. (2007). Log-shifted gamma approximation to lognormal sum distributions. IEEE Transactions on Vehicular Technology, 56(4), 2121–2129.

    Article  Google Scholar 

  • Laourine, A., Alouini, M. S., Affes, S., & Stephenne, A. (2008). On the capacity of generalized-K fading channels. IEEE Transactions on Wireless Communications, 7(7), 2441–2445.

    Article  Google Scholar 

  • Laourine, A., Alouini, M. S., Affes, S., & Stéphenne, A. (2009). On the performance analysis of composite multipath/shadowing channels using the G-distribution. IEEE Transactions on Communications, 57(4), 1162–1170.

    Article  Google Scholar 

  • Lee, R., & Holland, B. (1979). Distribution of a ratio of correlated gamma random variables. SIAM Journal on Applied Mathematics, 36(2), 304–320.

    Article  MathSciNet  MATH  Google Scholar 

  • Lewinsky, D. J. (1983). Nonstationary probabilistic target and cluttering scattering models. IEEE Transactions on Aerospace and Electronic Systems, 31, 490–449.

    Google Scholar 

  • Lienhard, J. H., & Meyer, P. L. (1967). A physical basis for the generalized gamma distribution. Quarterly of Applied Mathematics, 25(3), 330–334.

    Article  MATH  Google Scholar 

  • Ligeti, A. (2000). Outage probability in the presence of correlated lognormal useful and interfering components. IEEE Communications Letters, 4(1), 15–17.

    Article  Google Scholar 

  • Lindsey, W. C., & Simon, M. K. (1973). Telecommunication systems engineering. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Liu, Z., Almhana, J., Wang, F., & McGorman, R. (2007). Mixture lognormal approximations to lognormal sum distributions. IEEE Communications Letters, 11(9), 711–713.

    Article  Google Scholar 

  • Liu, Z., Almhana, J., & McGorman, R. (2008). Approximating lognormal sum distributions with power lognormal distributions. IEEE Transactions on Vehicular Technology, 57(4), 2611–2617.

    Article  Google Scholar 

  • Lomnicki, Z. A. (1967). On the distribution of products of random variables. Journal of the Royal Statistical Society: Series B Methodological, 29(3), 513–524.

    MathSciNet  MATH  Google Scholar 

  • Ma, Y., & Chai, C. C. (2000). Unified error probability analysis for generalized selection combining in Nakagami fading channels. IEEE Journal on Selected Areas in Communications, 18(11), 2198–2210.

    Article  Google Scholar 

  • Mann, H. B., & Wald, A. (1942). On the choice of the number of class intervals in the application of the chi square test. The Annals of Mathematical Statistics, 13, 306–317.

    Article  MathSciNet  MATH  Google Scholar 

  • Mathai, A., & Moschopoulos, P. (1991). On a multivariate gamma. Journal of Multivariate Analysis, 39(1), 135–153.

    Article  MathSciNet  MATH  Google Scholar 

  • Mathai, A. M. (1993). A handbook of generalized special functions for statistical and physical sciences. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Mathai, A. M., & Haubold, H. J. (2008). Special functions for applied scientists. New York: Springer.

    Book  MATH  Google Scholar 

  • Mathai, A. M., & Saxena, R. K. (1973). Generalized hypergeometric functions with applications in statistics and physical sciences. Berlin; New York: Springer.

    Book  MATH  Google Scholar 

  • McClish, D. K. (1989). Analyzing a portion of the ROC curve. Medical Decision Making, 9, 190–195.

    Article  Google Scholar 

  • McDaniel, S. T. (1990). Seafloor reverberation fluctuations. The Journal of the Acoustical Society of America, 88(3), 1530–1535.

    Article  Google Scholar 

  • Metz, C. E. (2006). Receiver operating characteristic analysis: A tool for the quantitative evaluation of observer performance and imaging systems. Journal of the American College of Radiology, 3(6), 413–422.

    Article  Google Scholar 

  • Middleton, D. (1996). An introduction to statistical communications theory. Piscataway, NJ: IEEE Press.

    MATH  Google Scholar 

  • Molisch, A. F. (2005). Wireless communications. Chichester: Wiley.

    Google Scholar 

  • Moschopoulos, P. (1985). The distribution of the sum of independent gamma random variables. Annals of the Institute of Statistical Mathematics, 37(1), 541–544.

    Article  MathSciNet  MATH  Google Scholar 

  • Nadarajah, S. (2005). Products, and ratios for a bivariate gamma distribution. Applied Mathematics and Computation, 171(1), 581–595.

    Article  MathSciNet  MATH  Google Scholar 

  • Nadarajah, S., & Gupta, A. (2005). On the product and ratio of Bessel random variables. International Journal of Mathematics and Mathematical Sciences, 2005(18), 2977–2989.

    Article  MathSciNet  MATH  Google Scholar 

  • Nadarajah, S., & Gupta, A. (2006). Some bivariate gamma distributions. Applied Mathematics Letters, 19(8), 767–774.

    Article  MathSciNet  MATH  Google Scholar 

  • Nadarajah, S., & Kotz, S. (2006a). On the product and ratio of gamma and Weibull random variables. Econometric Theory, 22(02), 338–344.

    Article  MathSciNet  MATH  Google Scholar 

  • Nadarajah, S., & Kotz, S. (2006b). Bivariate gamma distributions, sums and ratios. Bulletin of the Brazilian Mathematical Society, 37(2), 241–274.

    Article  MathSciNet  MATH  Google Scholar 

  • Nadarajah, S., & Kotz, S. (2007). A class of generalized models for shadowed fading channels. Wireless Personal Communications, 43(4), 1113–1120.

    Article  Google Scholar 

  • Nakagami, M. (1960). The m-distribution—A general formula of intensity distribution of rapid fading. In W. C. Hoffman (Ed.), Statistical methods in radio wave propagation. Elmsford, NY: Pergamon.

    Google Scholar 

  • Neath, A. A., & Cavanaugh, J. E. (2012). The Bayesian information criterion: Background, derivation, and applications. Wiley Interdisciplinary Reviews: Computational Statistics, 4, 199–203.

    Article  Google Scholar 

  • Nuttall, A. (1975). Some integrals involving the Q_M function (Corresp.) IEEE Transactions on Information Theory, 21(1), 95–96.

    Article  MathSciNet  MATH  Google Scholar 

  • Nuttall, A. H. (1969). Numerical evaluation of cumulative probability distribution functions directly from characteristic functions. Proceedings of the IEEE, 57(11), 2071–2072.

    Article  Google Scholar 

  • Nuttall, A. H. (1970). Alternate forms for numerical evaluation of cumulative probability distributions directly from characteristic functions. Proceedings of the IEEE, 58(11), 1872–1873.

    Article  Google Scholar 

  • Obuchowski, N. A. (2003). Receiver operating characteristic curves and their use in radiology. Radiology, 229, 3–8.

    Article  Google Scholar 

  • Okui, S. (1981). Probability distributions for ratios of fading signal envelopes and their generalization. Electronics and Communications in Japan, 64-B(3), 72–80.

    Article  Google Scholar 

  • Panajotović, A. S., Stefanović, M. Č., & Drača, D. L. (2009). Effect of microdiversity and macrodiversity on average bit error probability in shadowed fading channels in the presence of interference. ETRI Journal, 31(5), 500–505.

    Article  Google Scholar 

  • Papazafeiropoulos, A. K., & Kotsopoulos, S. A. (2011). The a-l-m and a-m-m small scale general fading distributions: A unified approach. Wireless Personal Communications, 57, 735–751.

    Article  Google Scholar 

  • Papoulis, A., & Pillai, S. U. (2002). Probability, random variables, and stochastic processes. Boston: McGraw-Hill.

    Google Scholar 

  • Park, C. S. (1986). The Mellin transform in probabilistic cash flow modeling. The Engineering Economist, 32(2), 115–134.

    Article  MathSciNet  Google Scholar 

  • Patzold, M. (2002). Mobile fading channels. Chichester: Wiley.

    Book  Google Scholar 

  • Piboongungon, T., & Aalo, V. A. (2004). Outage probability of L-branch selection combining in correlated lognormal fading channels. Electronics Letters, 40(14), 886–888.

    Article  Google Scholar 

  • Podolski, H. (1972). The distribution of a product of n independent random variables with generalized gamma distribution. Demonstratio Mathematica, 4(2), 119–123.

    MathSciNet  MATH  Google Scholar 

  • Polydorou, D. S., Babalis, P. G., & Capsalis, C. N. (1999). Statistical characterization of fading in LOS wireless channels with a finite number of dominant paths. Application in millimeter frequencies. International Journal of Infrared and Millimeter Waves, 20(3), 461–472.

    Article  Google Scholar 

  • Proakis, J. G. (2001). Digital communications. Boston: McGraw-Hill.

    MATH  Google Scholar 

  • Provost, S. (1989). On sums of independent gamma random variables. Statistics, 20(4), 583–591.

    Article  MathSciNet  MATH  Google Scholar 

  • Rappaport, T. S. (2002). Wireless communications: Principles and practice. Upper Saddle River, NJ: Prentice Hall PTR.

    MATH  Google Scholar 

  • Redner, R., & Walker, H. F. (1984). Maximum likelihood estimation and the EM algorithm. SIAM Review, 26, 195–239.

    Article  MathSciNet  MATH  Google Scholar 

  • Rice, S. (1974). Probability distributions for noise plus several sine waves–the problem of computation. IEEE Transactions on Communications, 22(6), 851–853.

    Article  Google Scholar 

  • Rohatgi, V. K., & Saleh, A. K. M. E. (2001). An introduction to probability and statistics. New York: Wiley.

    MATH  Google Scholar 

  • Rossberg, A. G. (2008). Laplace transforms of probability distributions and their inversions are easy on logarithmic scales. Journal of Applied Probability, 45(2), 531–541.

    Article  MathSciNet  MATH  Google Scholar 

  • Sahu, P. R., & Chaturvedi, A. K. (2005). Performance analysis of predetection EGC receiver in Weibull fading channel. Electronics Letters, 41(2), 85–86.

    Article  Google Scholar 

  • Saleh, A., & Valenzuela, R. A. (1987). A statistical model for indoor multipath propagation. IEEE Journal on Selected Areas in Communications, 5, 128–137.

    Article  Google Scholar 

  • Salo, J., El-Sallabi, H. M., & Vainikainen, P. (2006). The distribution of the product of independent Rayleigh random variables. IEEE Transactions on Antennas and Propagation, 54(2), 639–643.

    Article  MathSciNet  Google Scholar 

  • Schwartz, M. (1980). Information transmission, modulation, and noise: A unified approach to communication systems. New York: McGraw-Hill.

    Google Scholar 

  • Schwartz, M., Bennett, W. R., & Stein, S. (1996). Communication systems and techniques. Piscataway, NJ: IEEE Press.

    Google Scholar 

  • Selim, B., Alhussein, O., Muhaidat, S., Karagiannidis, G. K., & Liang, J. (2015). Modeling and analysis of wireless channels via the mixture of Gaussian distribution. IEEE Transactions on Vehicular Technology, 65(10), 8309–8321.

    Article  Google Scholar 

  • Shah, A., Haimovich, A. M., Simon, M. K., & Alouini, M. S. (2000). Exact bit-error probability for optimum combining with a Rayleigh fading Gaussian cochannel interferer. IEEE Transactions on Communications, 48(6), 908–912.

    Article  Google Scholar 

  • Shankar, P. (2002a). Introduction to wireless systems. New York: Wiley.

    Google Scholar 

  • Shankar, P. (2002b). Ultrasonic tissue characterization using a generalized Nakagami model. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 48(6), 1716–1720.

    Article  Google Scholar 

  • Shankar, P. M. (2004). Error rates in generalized shadowed fading channels. Wireless Personal Communications, 28(3), 233–238.

    Article  Google Scholar 

  • Shankar, P. M. (2005). Outage probabilities in shadowed fading channels using a compound statistical model. IEE Proceedings on Communications, 152(6), 828–832.

    Article  Google Scholar 

  • Shankar, P. M. (2010). Statistical models for fading and shadowed fading channels in wireless systems: A pedagogical perspective. Wireless Personal Communications, 60(2), 191–213. doi:10.1007/s11277-010-9938-2.

    Article  Google Scholar 

  • Shankar, P. M. (2013). Diversity in cascaded N*Nakagami channels. Annals of Telecommunications, 68(7), 477–483.

    Article  Google Scholar 

  • Shankar, P. M. (2016). Performance of cognitive radio in N*Nakagami cascaded channels. WIRE, 88(3), 657–667.

    Google Scholar 

  • Shankar, P. M., & Gentile, C. (2010). Statistical analysis of short term fading and shadowing in ultra-wideband systems. In IEEE International Conference on Communications (ICC), 2010 (pp. 1–6).

    Google Scholar 

  • Shanmugam, K. S. (1979). Digital and analog communication systems. New York: Wiley.

    Google Scholar 

  • Shepherd, N. H. (1977). Radio wave loss deviation and shadow loss at 900 MHZ. IEEE Transactions on Vehicular Technology, 26(4), 309–313.

    Article  Google Scholar 

  • Shin, J. W., Chang, J. H., & Kim, N. S. (2005). Statistical modeling of speech signals based on generalized gamma distribution. IEEE Signal Processing Letters, 12(3), 258–261.

    Article  Google Scholar 

  • Sijing, J., & Beaulieu N. C. (2010). BER of antipodal signaling in Laplace noise. In 2010 25th Biennial Symposium on Communications (QBSC).

    Google Scholar 

  • Simon, M. (2002). The Nuttall Q function-its relation to the Marcum Q function and its application in digital communication performance evaluation. IEEE Transactions on Communications, 50(11), 1712–1715.

    Article  Google Scholar 

  • Simon, M. K., & Alouini, M. S. (2003). Some new results for integrals involving the generalized Marcum Q function and their application to performance evaluation over fading channels. IEEE Transactions on Wireless Communications, 2(4), 611–615.

    Article  Google Scholar 

  • Simon, M. K., & Alouini, M.-S. (2005). Digital communication over fading channels. Hoboken, NJ: Wiley-Interscience.

    Google Scholar 

  • Simon, M. K., Hinedi, S. M., & Lindsey, W. C. (1995). Digital communication techniques: Signal design and detection. Englewood Cliffs, NJ: Prentice Hall PTR.

    Google Scholar 

  • Sklar, B. (1997a). Rayleigh fading channels in mobile digital communication systems. I. Characterization. IEEE Communications Magazine, 35(7), 90–100.

    Article  Google Scholar 

  • Sklar, B. (1997b). Rayleigh fading channels in mobile digital communication systems. II. Mitigation. IEEE Communications Magazine, 35(7), 102–109.

    Article  Google Scholar 

  • Sklar, B. (2001). Digital communications: Fundamentals and applications. Upper Saddle River, NJ: Prentice-Hall PTR.

    MATH  Google Scholar 

  • Slimane, B. (2001). Bounds on the distribution of a sum of independent lognormal random variables. IEEE Transactions on Communications, 49(6), 975–978.

    Article  MATH  Google Scholar 

  • Sowerby, K. W., & Williamson, A. G. (1987). Outage probability calculations for a mobile radio system having two log-normal interferers. Electronics Letters, 23(25), 1345–1346.

    Article  Google Scholar 

  • Springer, M., & Thompson, W. (1966). The distribution of products of independent random variables. SIAM Journal on Applied Mathematics, 14(3), 511–526.

    Article  MathSciNet  MATH  Google Scholar 

  • Springer, M., & Thompson, W. (1970). The distribution of products of beta, gamma and Gaussian random variables. SIAM Journal on Applied Mathematics, 18(4), 721–737.

    Article  MathSciNet  MATH  Google Scholar 

  • Stacy, E. (1962). A generalization of the gamma distribution. The Annals of Mathematical Statistics, 33(3), 1187–1192.

    Article  MathSciNet  MATH  Google Scholar 

  • Stacy, E., & Mihram, G. (1965). Parameter estimation for a generalized gamma distribution. Technometrics, 7(3), 349–358.

    Article  MathSciNet  MATH  Google Scholar 

  • Steele, R., & Hanzó, L. (1999). Mobile radio communications: Second and third generation cellular and WATM systems. Chichester; New York: Wiley.

    Book  Google Scholar 

  • Stuart, A. (1962). Gamma-distributed products of independent random variables. Biometrika, 49(3–4), 564.

    Article  MathSciNet  MATH  Google Scholar 

  • Stuber, G. L. (2000). Principles of mobile communication. New York: Kluwer Academic.

    Google Scholar 

  • Subadar, R., & Sahu, P. R. (2009). Performance analysis of dual MRC receiver in correlated Hoyt fading channels. IEEE Communications Letters, 13(6), 405–407.

    Article  Google Scholar 

  • Subrahmanaim, K. (1970). On some applications of mellin transforms to statistics: Dependent random variables. SIAM Journal on Applied Mathematics, 19(4), 658–662.

    Article  MathSciNet  Google Scholar 

  • Suzuki, H. (1977). A statistical model for urban radio propagation. IEEE Transactions on Communications, 25, 673–680.

    Article  Google Scholar 

  • Tan, C. C., & Beaulieu, N. C. (1997). Infinite series representations of the bivariate Rayleigh and Nakagami-distributions. IEEE Transactions on Communications, 45(10), 1159–1161.

    Article  Google Scholar 

  • Taub, H., & Schilling, D. L. (1986). Principles of communication systems. New York: McGraw-Hill.

    Google Scholar 

  • Tellambura, C., & Annamalai, A. (1999). An unified numerical approach for computing the outage probability for mobile radio systems. IEEE Communications Letters, 3(4), 97–99.

    Article  Google Scholar 

  • Tellambura, C., & Annamalai, A. (2000). Efficient computation of erfc(x) for large arguments. IEEE Transactions on Communications, 48(4), 529–532.

    Article  MATH  Google Scholar 

  • Tellambura, C., & Annamalai A. (2003). Unified performance bounds for generalized selection diversity combining in fading channels. In Wireless Communications and Networking (WCNC), 2003 IEEE.

    Google Scholar 

  • Tellambura, C., et al. (2003). Closed form and infinite series solutions for the MGF of a dual-diversity selection combiner output in bivariate Nakagami fading. IEEE Transactions on Communications, 51(4), 539–542.

    Article  Google Scholar 

  • Tepedelenlioglu, C., & Gao, P. (2005). Estimators of the Nakagami-m parameters and performance analysis. IEEE Transactions on Wireless Communications, 4, 519–527.

    Article  Google Scholar 

  • Tjhung, T. T., & Chai, C. C. (1999). Fade statistics in Nakagami-lognormal channels. IEEE Transactions on Communications, 47(12), 1769–1772.

    Article  Google Scholar 

  • van Erkel, A. R., & Pattynama, P. M. T. (1998). Receiver operating characteristic (ROC) analysis: Basic principles and applications in radiology. European Journal of Radiology, 27, 88–94.

    Article  Google Scholar 

  • Van Trees, H. L. (1968). Detection, estimation, and modulation theory, part I. New York: Wiley.

    MATH  Google Scholar 

  • Vatalaro, F. (1995). Generalised Rice-lognormal channel model for wireless communications. Electronics Letters, 31(22), 1899–1900.

    Article  Google Scholar 

  • Vaughn, R. A., & Anderson, J. B. (2003). Channels, propagation and antennas for mobile communications. Herts: IEE.

    Book  Google Scholar 

  • Voda, V. G. (2009). A method constructing density functions: The case for a generalized Rayleigh variable. Applications of Mathematics, 54(5), 417–443.

    Article  MathSciNet  MATH  Google Scholar 

  • Wells, W. T., Anderson, R. L., & Cell, J. W. (1962). The distribution of the product of two central or non-central Chi-Square variates. The Annals of Mathematical Statistics, 33(3), 1016–1020.

    Article  MATH  Google Scholar 

  • Winters, J. (1987). Optimum combining for indoor radio systems with multiple users. IEEE Transactions on Communications, 35(11), 1222–1230.

    Article  Google Scholar 

  • Winters, J. H. (1984). Optimum combining in digital mobile radio with cochannel interference. IEEE Transactions on Vehicular Technology, 33(3), 144–155.

    Article  MathSciNet  Google Scholar 

  • Winters, J. H. (1998). The diversity gain of transmit diversity in wireless systems with Rayleigh fading. IEEE Transactions on Vehicular Technology, 47(1), 119–123.

    Article  Google Scholar 

  • Withers, C., & Nadarajah, S. (2008). MGFs for Rayleigh random variables. Wireless Personal Communications, 46(4), 463–468.

    Article  Google Scholar 

  • Wolfram. (2011). http://functions.wolfram.com/, Wolfram Research.

  • Wongtrairat, W., & Supnithi, P. (2009). Performance of digital modulation in double Nakagami-m fading channels with MRC diversity. IEICE Transactions on Communications, E92b(2), 559–566.

    Article  Google Scholar 

  • Yacoub, M. D. (2000). Fading distributions and co-channel interference in wireless systems. IEEE Antennas and Propagation Magazine, 42(1), 150–160.

    Article  Google Scholar 

  • Yacoub, M. D. (2007a). The a-m distribution: A physical fading model for the Stacy distribution. IEEE Transactions on Vehicular Technology, 56(1), 27–34.

    Article  Google Scholar 

  • Yacoub, M. D. (2007b). The m-m distribution and the Z-m distribution. IEEE Antennas and Propagation Magazine, 49(1), 68–81.

    Article  Google Scholar 

  • Yue, S., et al. (2001). A review of bivariate gamma distributions for hydrological applications. Journal of Hydrology, 246, 1–18.

    Article  Google Scholar 

  • Zogas, D., & Karagiannidis, G. K. (2005). Infinite-series representations associated with the bivariate Rician distribution and their applications. IEEE Transactions on Communications, 53(11), 1790–1179.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shankar, P.M. (2017). Concepts of Probability and Statistics. In: Fading and Shadowing in Wireless Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-53198-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53198-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53197-7

  • Online ISBN: 978-3-319-53198-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics