Skip to main content

Energy Efficient Driving in Dynamic Environment: Considering Other Traffic Participants and Overtaking Possibility

  • Chapter
  • First Online:
Comprehensive Energy Management – Eco Routing & Velocity Profiles

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAUTOENG))

Abstract

This chapter studies energy efficient driving of (semi)autonomous electric vehicles operating in a dynamic environment with other traffic participants on a unidirectional, multi-lane road. This scenario is considered to be a so called hard problem, as constraints imposed are varying in time and space. Neglecting the constraints imposed from the surrounding traffic, the generation of an energy optimal speed trajectory may lead to bad results, with the risk of low driver acceptance when applied in a real driving environment. An existing approach satisfies constraints from surrounding traffic by modifying an existing unconstrained trajectory. In contrast to this, the proposed approach incorporates a leading vehicle’s motion as constraint in order to generate a new optimal speed trajectory in a global optimal sense. First simulation results show that energy optimal driving considering other vehicle participants is important. Even in simple setups significantly (8%) less energy is consumed at only 1.3% travelling time prolongation compared to the best constant speed driving strategy. Additionally, the proposed driving strategy is using 4.5% less energy and leads to 1.6% shorter travelling time compared to the existing overtaking approach. Using simulation studies, the proposed energy optimal driving strategy is analyzed in different scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bingham C, Walsh C, Carroll S (2012) Impact of driving characteristics on electric vehicle energy consumption and range. IET Intel Trans Syst 6(1):29–35

    Article  Google Scholar 

  2. Minett CF, Salomons AM, Daamen W, Van Arem B, Kuijpers S (2011) Eco-routing: comparing the fuel consumption of different routes between an origin and destination using field test speed profiles and synthetic speed profiles. In 2011 IEEE forum on integrated and sustainable transportation system (FISTS), Vienna

    Google Scholar 

  3. Hellström E (2005) Explicit use of road topography for model predictive cruise control in heavy trucks. MS thesis, Linkoping University, Sweden

    Google Scholar 

  4. Hellström E (2010) Look-ahead control of heavy vehicles. Ph.D. thesis, Linköping, Sweden

    Google Scholar 

  5. Saerens B (2012) Optimal control based eco-driving. Ph.D. thesis, Katholieke Universiteit Leuven, Leuven

    Google Scholar 

  6. Kamal MAS, Mukai M, Murata J, Kawabe T (2011) Ecological vehicle control on roads with up-down slopes. IEEE Trans Intell Transp Syst 12(3):783–794

    Article  Google Scholar 

  7. Vajedi M, Azad NL (2016) Ecological adaptive cruise controller for plug-in hybrid electric vehicles using nonlinear model predictive control. IEEE Trans Intell Transp Syst 17(1):113–122

    Article  Google Scholar 

  8. Sciarretta A, Nunzio GD, Ojeda L (2015) Optimal ecodriving control: energy-efficient driving of road vehicles as an optimal control problem. IEEE Control Syst Mag 71–90

    Google Scholar 

  9. Mahler G, Vahidi A (2012) Reducing idling at red lights based on probabilistic prediction of traffic signal timings. In: 2012 American control conference (ACC), Montreal

    Google Scholar 

  10. De Nunzio G, Wit CC, Moulin P, Di Domenico D (2013) Eco-driving in urban traffic networks using traffic signal information. In: 52nd IEEE conference on decision and control, Florence, Italy, 10–13 Dec 2013

    Google Scholar 

  11. Kural E, Jones S, Parrilla AF, Grauers A (2014) Traffic light assistant system for optimized energy consumption in an electric vehicle. In: International Conference on Connected Vehicles and Expo (ICCVE)

    Google Scholar 

  12. The SARTRE Project. [Online]. Available: http://www.sartre-project.eu. Accessed 11 Aug 2016

  13. Mensing F, Bideaux E, Trigu R, Tattegrain H (2013) Trajectory optimization for eco-driving taking into account traffic constraints. Trans Res Part D Trans Environ 18:55–61

    Google Scholar 

  14. Schmied R, Waschl H, del Re L (2016) Comfort oriented robust adaptive cruise control in multi-lane traffic conditions. In: 8th IFAC international symposium on advances in automotive control, Norrköping, Sweden, 2016

    Google Scholar 

  15. Wang M, Hoogendoorn S, Daamen W, van Arem B, Happee R (2015) Game theoretic approach for predictive lane-changing and car-following control. Transp Res Part C Emerg Technol 58(Part A):73–92

    Google Scholar 

  16. Murgovski JSN (2015) Predictive cruise control with autonomous overtaking. In: 54th IEEE conference on decision and control (CDC), Osaka, Dec 2015

    Google Scholar 

  17. Kamal MAS, Taguchi S, Yoshimura T (2016) Efficient vehicle driving on multilane roads using model predictive control under a connected vehicle environment. IEEE Trans Intell Transp Syst (99):1–11

    Google Scholar 

  18. Shamir T (2004) How should an autonomous vehicle overtake a slower moving vehicle: design and analysis of an optimal trajectory. IEEE Trans Autom Control 49:607–610

    Article  MathSciNet  Google Scholar 

  19. Bellman R (1954) The theory of dynamic programming. The Rand Corporation, Santa Monica

    MATH  Google Scholar 

  20. Bertsekas D (2007) Dynamic programming and optimal control. Athena Scientific

    Google Scholar 

Download references

Acknowledgements

The project leading to this study has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 675999, ITEAM project.

VIRTUAL VEHICLE Research Center is funded within the COMET—Competence Centers for Excellent Technologies—programme by the Austrian Federal Ministry for Transport, Innovation and Technology (BMVIT), the Federal Ministry of Science, Research and Economy (BMWFW), the Austrian Research Promotion Agency (FFG), the province of Styria and the Styrian Business Promotion Agency (SFG). The COMET programme is administrated by FFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zlatan Ajanović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Ajanović, Z., Stolz, M., Horn, M. (2017). Energy Efficient Driving in Dynamic Environment: Considering Other Traffic Participants and Overtaking Possibility. In: Watzenig, D., Brandstätter, B. (eds) Comprehensive Energy Management – Eco Routing & Velocity Profiles. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-53165-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53165-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53164-9

  • Online ISBN: 978-3-319-53165-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics