Skip to main content

The Midbody and its Remnant in Cell Polarization and Asymmetric Cell Division

  • Chapter
  • First Online:
Asymmetric Cell Division in Development, Differentiation and Cancer

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 61))

Abstract

The midbody is a protein-dense assembly that forms during cytokinesis when the actomyosin ring constricts around bundling central spindle microtubules. After its initial description by Walther Flemming in the late nineteenth century and its rediscovery through electron microscopy in the 1960s and 1970s, its ultrastructural organization and the sequential recruitment of its molecular constituents has only been elucidated in the past decade. Recently, it has become clear that the midbody can serve as a polarity cue during asymmetric cell division, cell polarization, and spindle orientation by coordinating cytoskeletal organization, vesicular transport, and localized cortical cues. In this chapter, these newly emerging functions will be discussed as well as asymmetries during midbody formation and their consequences for cellular organization in tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agromayor M, Martin-Serrano J (2013) Knowing when to cut and run: mechanisms that control cytokinetic abscission. Trends Cell Biol 23:433–441

    Article  CAS  PubMed  Google Scholar 

  • Babst M, Katzmann DJ, Estepa-Sabal EJ et al (2002a) Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev Cell 3:271–282

    Article  CAS  PubMed  Google Scholar 

  • Babst M, Katzmann DJ, Snyder WB et al (2002b) Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev Cell 3:283–289

    Article  CAS  PubMed  Google Scholar 

  • Basto R, Lau J, Vinogradova T et al (2006) Flies without centrioles. Cell 125:1375–1386

    Article  CAS  PubMed  Google Scholar 

  • Bhutta MS, McInerny CJ, Gould GW (2014) ESCRT function in cytokinesis: location, dynamics and regulation by mitotic kinases. Int J Mol Sci 15:21723–21739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosveld F, Markova O, Guirao B et al (2016) Epithelial tricellular junctions act as interphase cell shape sensors to orient mitosis. Nature 530:495–498

    Article  CAS  PubMed  Google Scholar 

  • Bryant DM, Datta A, Rodríguez-Fraticelli AE et al (2010) A molecular network for de novo generation of the apical surface and lumen. Nat Cell Biol 12:1035–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryant DM, Roignot J, Datta A et al (2014) A molecular switch for the orientation of epithelial cell polarization. Dev Cell 31:171–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buck RC, Tidsale JM (1962a) An electron microscopic study of the cleavage furrow in mammalian cells. J Cell Biol 13:117–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buck RC, Tisdale JM (1962b) The fine structure of the mid-body of the rat erythroblast. J Cell Biol 13:109–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckley CE, Ren X, Ward LC et al (2013) Mirror-symmetric microtubule assembly and cell interactions drive lumen formation in the zebrafish neural rod. EMBO J 32:30–44

    Article  CAS  PubMed  Google Scholar 

  • Cáceres A, Ye B, Dotti CG (2012) Neuronal polarity: demarcation, growth and commitment. Curr Opin Cell Biol 24:547–553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calderon de Anda F, Gärtner A, Tsai LH et al (2008) Pyramidal neuron polarity axis is defined at the bipolar stage. J Cell Sci 121:178–185

    Article  CAS  PubMed  Google Scholar 

  • Capalbo L, Montembault E, Takeda T et al (2012) The chromosomal passenger complex controls the function of endosomal sorting complex required for transport-III Snf7 proteins during cytokinesis. Open Biol 2:120070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carlton JG, Martin-Serrano J (2007) Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316:1908–1912

    Article  CAS  PubMed  Google Scholar 

  • Carlton JG, Caballe A, Agromayor M et al (2012) ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C. Science 336:220–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho A, Desai A, Oegema K (2009) Structural memory in the contractile ring makes the duration of cytokinesis independent of cell size. Cell 137:926–937

    Article  CAS  PubMed  Google Scholar 

  • Cascone I, Selimoglu R, Ozdemir C et al (2008) Distinct roles of RalA and RalB in the progression of cytokinesis are supported by distinct RalGEFs. EMBO J 27:2375–2387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XW, Inoue M, Hsu SC et al (2006) RalA-exocyst-dependent recycling endosome trafficking is required for the completion of cytokinesis. J Biol Chem 281:38609–38616

    Article  CAS  PubMed  Google Scholar 

  • Chen CT, Ettinger AW, Huttner WB et al (2013) Resurrecting remnants: the lives of post-mitotic midbodies. Trends Cell Biol 23:118–128

    Article  CAS  PubMed  Google Scholar 

  • Christ L, Wenzel EM, Liestøl K et al (2016) ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission. J Cell Biol 212:499–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowell EF, Gaffuri AL, Gayraud-Morel B et al (2014) Engulfment of the midbody remnant after cytokinesis in mammalian cells. J Cell Sci 127:3840–3851

    Article  CAS  PubMed  Google Scholar 

  • D’Avino PP, Capalbo L (2016) Regulation of midbody formation and function by mitotic kinases. Semin Cell Dev Biol pii:S1084–9521(16)30018–0

    Google Scholar 

  • D’Avino PP, Giansanti MG, Petronczki M (2015) Cytokinesis in animal cells. Cold Spring Harb Perspect Biol 7:a015834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Anda FC, Pollarolo G, Da Silva JS et al (2005) Centrosome localization determines neuronal polarity. Nature 436:704–708

    Article  PubMed  CAS  Google Scholar 

  • den Elzen N, Buttery CV, Maddugoda MP et al (2009) Cadherin adhesion receptors orient the mitotic spindle during symmetric cell division in mammalian epithelia. Mol Biol Cell 20:3740–3750

    Article  CAS  Google Scholar 

  • Driesch HAE (1893) Entwicklungsmechanische Studien. Zeitschrift für Wissenschaftliche Zoologie 55:1–62

    Google Scholar 

  • Dubreuil V, Marzesco AM, Corbeil D et al (2007) Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1. J Cell Biol 176:483–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elia N, Sougrat R, Spurlin TA et al (2011) Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc Natl Acad Sci U S A 108:4846–4851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elia N, Ott C, Lippincott-Schwartz J (2013) Incisive imaging and computation for cellular mysteries: lessons from abscission. Cell 155:1220–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estey MP, Di Ciano-Oliveira C, Froese CD et al (2010) Distinct roles of septins in cytokinesis: SEPT9 mediates midbody abscission. J Cell Biol 191:741–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ettinger AW, Wilsch-Bräuninger M, Marzesco AM et al (2011) Proliferating versus differentiating stem and cancer cells exhibit distinct midbody-release behaviour. Nat Commun 2:503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fielding AB, Schonteich E, Matheson J et al (2005) Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis. EMBO J 24:3389–3399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figard L, Xu H, Garcia HG et al (2013) The plasma membrane flattens out to fuel cell-surface growth during Drosophila cellularization. Dev Cell 27:648–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fink J, Carpi N, Betz T et al (2011) External forces control mitotic spindle positioning. Nat Cell Biol 13:771–778

    Article  CAS  PubMed  Google Scholar 

  • Fleming ES, Zajac M, Moschenross DM et al (2007) Planar spindle orientation and asymmetric cytokinesis in the mouse small intestine. J Histochem Cytochem 55:1173–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flemming W (1874) Über die ersten Entwicklungserscheinungen am Ei der Teichmuschel. Arch Mikrosk Anat 10:257–292

    Article  Google Scholar 

  • Flemming W (1875) Studien in der Entwicklungsgeschichte der Najaden. Sitzungsber Kaiserl Akad Wiss 71:81–212

    Google Scholar 

  • Flemming W (1876) Beobachtungen über die Beschaffenheit des Zellkerns. Arch Mikrosk Anat 13:693–717

    Article  Google Scholar 

  • Flemming W (1882) Zellsubstanz, Kern und Zelltheilung. Vogel, Leipzig

    Google Scholar 

  • Flemming W (1891) Neue Beiträge zur Kenntnis der Zelle. Arch Mikrosk Anat 37:685–751

    Article  Google Scholar 

  • Flemming W (1965) Contributions to the knowledge of the cell and its vital processes. J Cell Biol 25:3–69

    CAS  PubMed  PubMed Central  Google Scholar 

  • Founounou N, Loyer N, Le Borgne R (2013) Septins regulate the contractility of the actomyosin ring to enable adherens junction remodeling during cytokinesis of epithelial cells. Dev Cell 24:242–255

    Article  CAS  PubMed  Google Scholar 

  • Gärtner A, Fornasiero EF, Munck S et al (2012) N-cadherin specifies first asymmetry in developing neurons. EMBO J 31:1893–1903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geddis AE, Fox NE, Tkachenko E et al (2007) Endomitotic megakaryocytes that form a bipolar spindle exhibit cleavage furrow ingression followed by furrow regression. Cell Cycle 6:455–460

    Article  CAS  PubMed  Google Scholar 

  • Gibson WT, Veldhuis JH, Rubinstein B et al (2011) Control of the mitotic cleavage plane by local epithelial topology. Cell 144:427–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green RA, Mayers JR, Wang S et al (2013) The midbody ring scaffolds the abscission machinery in the absence of midbody microtubules. J Cell Biol 203:505–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gromley A, Yeaman C, Rosa J et al (2005) Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission. Cell 123:75–87

    Article  CAS  PubMed  Google Scholar 

  • Guillot C, Lecuit T (2013) Adhesion disengagement uncouples intrinsic and extrinsic forces to drive cytokinesis in epithelial tissues. Dev Cell 24:227–241

    Article  CAS  PubMed  Google Scholar 

  • Guizetti J, Schermelleh L, Mäntler J et al (2011) Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331:1616–1620

    Article  CAS  PubMed  Google Scholar 

  • Herszterg S, Leibfried A, Bosveld F et al (2013) Interplay between the dividing cell and its neighbors regulates adherens junction formation during cytokinesis in epithelial tissue. Dev Cell 24:256–270

    Article  CAS  PubMed  Google Scholar 

  • Herszterg S, Pinheiro D, Bellaïche Y (2014) A multicellular view of cytokinesis in epithelial tissue. Trends Cell Biol 24:285–293

    Article  CAS  PubMed  Google Scholar 

  • Hertwig OWA (1893) Über den Werth der ersten Furchungszellen für die Organbildung des Embryos. Experimentelle Studien am Frosch und Tritonei. Archiv für mikroscopische Anatomie 42:662–807

    Article  Google Scholar 

  • Hofmeister FWB (1863) Zusatze und Berichtigungen zu den 1851 veröffentlichen Untersuchungengen der Entwicklung höherer Kryptogamen. Jahrbucher für Wissenschaft und Botanik 3:259–293

    Google Scholar 

  • Horgan CP, Walsh M, Zurawski TH et al (2004) Rab11-FIP3 localises to a Rab11-positive pericentrosomal compartment during interphase and to the cleavage furrow during cytokinesis. Biochem Biophys Res Commun 319:83–94

    Article  CAS  PubMed  Google Scholar 

  • Hu CK, Coughlin M, Mitchison TJ (2012) Midbody assembly and its regulation during cytokinesis. Mol Biol Cell 23:1024–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyman AA (1989) Centrosome movement in the early divisions of Caenorhabditis elegans: a cortical site determining centrosome position. J Cell Biol 109:1185–1193

    Article  CAS  PubMed  Google Scholar 

  • Hyman AA, White JG (1987) Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans. J Cell Biol 105:2123–2135

    Article  CAS  PubMed  Google Scholar 

  • Isakson P, Lystad AH, Breen K et al (2013) TRAF6 mediates ubiquitination of KIF23/MKLP1 and is required for midbody ring degradation by selective autophagy. Autophagy 9:1955–1964

    Article  CAS  PubMed  Google Scholar 

  • Iwamori T, Iwamori N, Ma L et al (2010) TEX14 interacts with CEP55 to block cell abscission. Mol Cell Biol 30:2280–2292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaffe AB, Kaji N, Durgan J et al (2008) Cdc42 controls spindle orientation to position the apical surface during epithelial morphogenesis. J Cell Biol 183:625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones OP (1969) Elimination of midbodies from mitotic erythroblasts and their contribution to fetal blood plasma. J Natl Cancer Inst 42:753–759

    CAS  PubMed  Google Scholar 

  • Kanada M, Nagasaki A, Uyeda TQ (2005) Adhesion-dependent and contractile ring-independent equatorial furrowing during cytokinesis in mammalian cells. Mol Biol Cell 16:3865–3872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan A, Reiner O (2011) Linking cytoplasmic dynein and transport of Rab8 vesicles to the midbody during cytokinesis by the doublecortin domain-containing 5 protein. J Cell Sci 124:3989–4000

    Article  CAS  PubMed  Google Scholar 

  • Katzmann DJ, Babst M, Emr SD (2001) Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106:145–155

    Article  CAS  PubMed  Google Scholar 

  • Keating HH, White JG (1998) Centrosome dynamics in early embryos of Caenorhabditis elegans. J Cell Sci 111:3027–3033

    CAS  PubMed  Google Scholar 

  • Kim MS, Froese CD, Estey MP et al (2011) SEPT9 occupies the terminal positions in septin octamers and mediates polymerization-dependent functions in abscission. J Cell Biol 195:815–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klinkert K, Rocancourt M, Houdusse A et al (2016) Rab35 GTPase couples cell division with initiation of epithelial apico-basal polarity and lumen opening. Nat Commun 7:11166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosodo Y, Röper K, Haubensak W et al (2004) Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J 23:2314–2324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosodo Y, Toida K, Dubreuil V et al (2008) Cytokinesis of neuroepithelial cells can divide their basal process before anaphase. EMBO J 27:3151–3163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouranti I, Sachse M, Arouche N et al (2006) Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis. Curr Biol 16:1719–1725

    Article  CAS  PubMed  Google Scholar 

  • Kuo TC, Chen CT, Baron D et al (2011) Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nat Cell Biol 13:1214–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafaurie-Janvore J, Maiuri P, Wang I et al (2013) ESCRT-III assembly and cytokinetic abscission are induced by tension release in the intercellular bridge. Science 339:1625–1629

    Article  CAS  PubMed  Google Scholar 

  • Li D, Mangan A, Cicchini L et al (2014) FIP5 phosphorylation during mitosis regulates apical trafficking and lumenogenesis. EMBO Rep 15:428–437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maddox AS, Lewellyn L, Desai A et al (2007) Anillin and the septins promote asymmetric ingression of the cytokinetic furrow. Dev Cell 12:827–835

    Article  CAS  PubMed  Google Scholar 

  • Margall-Ducos G, Celton-Morizur S, Couton D et al (2007) Liver tetraploidization is controlled by a new process of incomplete cytokinesis. J Cell Sci 120:3633–3639

    Article  CAS  PubMed  Google Scholar 

  • Mendoza M, Norden C, Durrer K et al (2009) A mechanism for chromosome segregation sensing by the NoCut checkpoint. Nat Cell Biol 11:477–483

    Article  CAS  PubMed  Google Scholar 

  • Mierzwa B, Gerlich DW (2014) Cytokinetic abscission: molecular mechanisms and temporal control. Dev Cell 31:525–538

    Article  CAS  PubMed  Google Scholar 

  • Minc N, Burgess D, Chang F (2011) Influence of cell geometry on division-plane positioning. Cell 144:414–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morais-de-Sa E, Sunkel C (2013) Adherens junctions determine the apical position of the midbody during follicular epithelial cell division. EMBO Rep 14:696–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morita E, Sandrin V, Chung HY et al (2007) Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J 26:4215–4227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullins JM, Biesele JJ (1973) Cytokinetic activities in a human cell line: the midbody and intercellular bridge. Tissue Cell 5:47–61

    Article  CAS  PubMed  Google Scholar 

  • Naganathan SR, Fürthauer S, Nishikawa M et al (2014) Active torque generation by the actomyosin cell cortex drives left-right symmetry breaking. Elife 3:e04165

    Article  PubMed  PubMed Central  Google Scholar 

  • Neto H, Kaupisch A, Collins LL et al (2013) Syntaxin 16 is a master recruitment factor for cytokinesis. Mol Biol Cell 24:3663–3674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norden C, Mendoza M, Dobbelaere J et al (2006) The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell 125:85–98

    Article  CAS  PubMed  Google Scholar 

  • Ou G, Gentili C, Gönczy P (2014) Stereotyped distribution of midbody remnants in early C. elegans embryos requires cell death genes and is dispensable for development. Cell Res 24:251–253

    Article  CAS  PubMed  Google Scholar 

  • Paweletz N (1967) On the function of the “Flemming body” during division of animal cells. Naturwissenschaften 54:533–535

    Article  CAS  PubMed  Google Scholar 

  • Paweletz N (2001) Walther Flemming: pioneer of mitosis research. Nat Rev Mol Cell Biol 2:72–75

    Article  CAS  PubMed  Google Scholar 

  • Pflüger EFW (1884) Ueber die Einwirkung der Schwerkraft und anderer Bedingungen auf die Richtung der Zelltheilung. Pflugers Arch 34:607–616

    Article  Google Scholar 

  • Pocha SM, Knust E (2013) Complexities of Crumbs function and regulation in tissue morphogenesis. Curr Biol 23:289–293

    Article  CAS  Google Scholar 

  • Pohl C (2008) Coordination of late stages of cytokinesis by the inhibitor of apoptosis protein BRUCE. Dissertation, Ludwig-Maximilians.-Universität München. https://edoc.ub.uni-muenchen.de/8848/

  • Pohl C (2009) Dual control of cytokinesis by the ubiquitin and autophagy pathways. Autophagy 5:561–562

    Article  CAS  PubMed  Google Scholar 

  • Pohl C (2015) Cytoskeletal symmetry breaking and chirality: From reconstituted systems to animal development. Symmetry 7:2062–2107

    Article  Google Scholar 

  • Pohl C, Bao Z (2010) Chiral forces organize left-right patterning in C. elegans by uncoupling midline and anteroposterior axis. Dev Cell 19:402–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pohl C, Jentsch S (2008) Final stages of cytokinesis and midbody ring formation are controlled by BRUCE. Cell 132:832–845

    Article  CAS  PubMed  Google Scholar 

  • Pollarolo G, Schulz JG, Munck S et al (2011) Cytokinesis remnants define first neuronal asymmetry in vivo. Nat Neurosci 14:1525–1533

    Article  CAS  PubMed  Google Scholar 

  • Ramanathan SP, Helenius J, Stewart MP et al (2015) Cdk1-dependent mitotic enrichment of cortical myosin II promotes cell rounding against confinement. Nat Cell Biol 17:148–159

    Article  CAS  PubMed  Google Scholar 

  • Reinsch S, Karsenti E (1994) Orientation of spindle axis and distribution of plasma membrane proteins during cell division in polarized MDCKII cells. J Cell Biol 126:1509–1526

    Article  CAS  PubMed  Google Scholar 

  • Robbins E, Gonatas NK (1964) The ultrastructure of a mammalian cell during the mitotic cycle. J Cell Biol 21:429–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose LS, Kemphues K (1998) The let-99 gene is required for proper spindle orientation during cleavage of the C. elegans embryo. Development 125:1337–1346

    CAS  PubMed  Google Scholar 

  • Salzmann V, Chen C, Chiang CY et al (2014) Centrosome-dependent asymmetric inheritance of the midbody ring in Drosophila germline stem cell division. Mol Biol Cell 25:267–275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanger JM, Dome JS, Sanger JW (1998) Unusual cleavage furrows in vertebrate tissue culture cells: insights into the mechanisms of cytokinesis. Cell Motil Cytoskeleton 39:95–106

    Article  CAS  PubMed  Google Scholar 

  • Schiel JA, Childs C, Prekeris R (2013) Endocytic transport and cytokinesis: from regulation of the cytoskeleton to midbody inheritance. Trends Cell Biol 23:319–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlüter MA, Pfarr CS, Pieczynski J et al (2009) Trafficking of Crumbs3 during cytokinesis is crucial for lumen formation. Mol Biol Cell 20:4652–4663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schonegg S, Hyman AA, Wood WB (2014) Timing and mechanism of the initial cue establishing handed left–right asymmetry in Caenorhabditis elegans embryos. Genesis 52:572–580

    Article  PubMed  Google Scholar 

  • Singh D, Pohl C (2014a) Coupling of rotational cortical flow, asymmetric midbody positioning, and spindle rotation mediates dorsoventral axis formation in C. elegans. Dev Cell 28:253–267

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Pohl C (2014b) A function for the midbody remnant in embryonic patterning. Commun Integr Biol 7:e28533

    Article  PubMed  PubMed Central  Google Scholar 

  • Skop AR, White JG (1998) The dynactin complex is required for cleavage plane specification in early Caenorhabditis elegans embryos. Curr Biol 8:1110–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorce B, Escobedo C, Toyoda Y et al (2015) Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement. Nat Commun 6:8872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steigemann P, Wurzenberger C, Schmitz MH et al (2009) Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 136:473–484

    Article  PubMed  CAS  Google Scholar 

  • Tawk M, Araya C, Lyons DA et al (2007) A mirror-symmetric cell division that orchestrates neuroepithelial morphogenesis. Nature 446:797–800

    Article  CAS  PubMed  Google Scholar 

  • Théry M, Racine V, Pépin A et al (2005) The extracellular matrix guides the orientation of the cell division axis. Nat Cell Biol 7:947–953

    Article  PubMed  CAS  Google Scholar 

  • Théry M, Jiménez-Dalmaroni A, Racine V et al (2007) Experimental and theoretical study of mitotic spindle orientation. Nature 447:493–496

    Article  PubMed  CAS  Google Scholar 

  • Thoresen SB, Campsteijn C, Vietri M et al (2014) ANCHR mediates Aurora-B-dependent abscission checkpoint control through retention of VPS4. Nat Cell Biol 16:550–560

    Article  CAS  PubMed  Google Scholar 

  • Toyoshima F, Nishida E (2007) Integrin-mediated adhesion orients the spindle parallel to the substratum in an EB1- and myosin X-dependent manner. EMBO J 26:1487–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyoshima F, Matsumura S, Morimoto H et al (2007) PtdIns(3,4,5)P3 regulates spindle orientation in adherent cells. Dev Cell 13:796–811

    Article  CAS  PubMed  Google Scholar 

  • Tsou MF, Hayashi A, DeBella LR et al (2002) LET-99 determines spindle position and is asymmetrically enriched in response to PAR polarity cues in C. elegans embryos. Development 129:4469–4481

    CAS  PubMed  Google Scholar 

  • Tsou MF, Ku W, Hayashi A et al (2003) PAR-dependent and geometry-dependent mechanisms of spindle positioning. J Cell Biol 160:845–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waddle JA, Cooper JA, Waterston RH (1994) Transient localized accumulation of actin in Caenorhabditis elegans blastomeres with oriented asymmetric divisions. Development 120:2317–2328

    CAS  PubMed  Google Scholar 

  • Wang T, Yanger K, Stanger BZ et al (2014) Cytokinesis defines a spatial landmark for hepatocyte polarization and apical lumen formation. J Cell Sci 127:2483–2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willenborg C, Jing J, Wu C et al (2011) Interaction between FIP5 and SNX18 regulates epithelial lumen formation. J Cell Biol 195:71–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson GM, Fielding AB, Simon GC et al (2005) The FIP3-Rab11 protein complex regulates recycling endosome targeting to the cleavage furrow during late cytokinesis. Mol Biol Cell 16:849–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zmuda JF, Rivas RJ (1998) The Golgi apparatus and the centrosome are localized to the sites of newly emerging axons in cerebellar granule neurons in vitro. Cell Motil Cytoskeleton 41:18–38

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the laboratory of CP is funded by the Deutsche Forschungsgemeinschaft (EXC 115, FOR 1756, SFB 1177) and the LOEWE Research Cluster Ubiquitin Networks. CP’s research concerning developmental functions of the midbody was supported by a European Union Framework Program 7 fellowship (Marie Curie Actions Project 326632).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Pohl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pohl, C. (2017). The Midbody and its Remnant in Cell Polarization and Asymmetric Cell Division. In: Tassan, JP., Kubiak, J. (eds) Asymmetric Cell Division in Development, Differentiation and Cancer. Results and Problems in Cell Differentiation, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-53150-2_7

Download citation

Publish with us

Policies and ethics