Skip to main content

Intrinsic and Extrinsic Determinants Linking Spindle Pole Fate, Spindle Polarity, and Asymmetric Cell Division in the Budding Yeast S. cerevisiae

  • Chapter
  • First Online:
Asymmetric Cell Division in Development, Differentiation and Cancer

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 61))

Abstract

The budding yeast S. cerevisiae is a powerful model to understand the multiple layers of control driving an asymmetric cell division. In budding yeast, asymmetric targeting of the spindle poles to the mother and bud cell compartments respectively orients the mitotic spindle along the mother–bud axis. This program exploits an intrinsic functional asymmetry arising from the age distinction between the spindle poles—one inherited from the preceding division and the other newly assembled. Extrinsic mechanisms convert this age distinction into differential fate. Execution of this program couples spindle orientation with the segregation of the older spindle pole to the bud. Remarkably, similar stereotyped patterns of inheritance occur in self-renewing stem cell divisions underscoring the general importance of studying spindle polarity and differential fate in yeast. Here, we review the mechanisms accounting for this pivotal interplay between intrinsic and extrinsic asymmetries that translate spindle pole age into differential fate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adames NR, Cooper JA (2000) Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae. J Cell Biol 149(4):863–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adames NR, Oberle JR, Cooper JA (2001) The surveillance mechanism of the spindle position checkpoint in yeast. J Cell Biol 153(1):159–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams IR, Kilmartin JV (1999) Localization of core spindle pole body (SPB) components during SPB duplication in Saccharomyces cerevisiae. J Cell Biol 145(4):809–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams AE, Pringle JR (1984) Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae. J Cell Biol 98(3):934–945

    Article  CAS  PubMed  Google Scholar 

  • Akhmanova A, Steinmetz MO (2015) Control of microtubule organization and dynamics: two ends in the limelight. Nat Rev Mol Cell Biol 16(12):711–726. doi:10.1038/nrm4084

    Article  CAS  PubMed  Google Scholar 

  • Alexandru G, Zachariae W, Schleiffer A, Nasmyth K (1999) Sister chromatid separation and chromosome re-duplication are regulated by different mechanisms in response to spindle damage. EMBO J 18(10):2707–2721. doi:10.1093/emboj/18.10.2707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amberg DC, Zahner JE, Mulholland JW, Pringle JR, Botstein D (1997) Aip3p/Bud6p, a yeast actin-interacting protein that is involved in morphogenesis and the selection of bipolar budding sites. Mol Biol Cell 8(4):729–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avena JS, Burns S, Yu Z, Ebmeier CC, Old WM, Jaspersen SL, Winey M (2014) Licensing of yeast centrosome duplication requires phosphoregulation of sfi1. Plos Genet 10(10):e1004666. doi:10.1371/journal.pgen.1004666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bardin AJ, Visintin R, Amon A (2000) A mechanism for coupling exit from mitosis to partitioning of the nucleus. Cell 102(1):21–31

    Article  CAS  PubMed  Google Scholar 

  • Baro B, Rodriguez-Rodriguez JA, Calabria I, Hernaez ML, Gil C, Queralt E (2013) Dual regulation of the mitotic exit network (MEN) by PP2A-Cdc55 phosphatase. Plos Genet 9(12):e1003966. doi:10.1371/journal.pgen.1003966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bertazzi DT, Kurtulmus B, Pereira G (2011) The cortical protein Lte1 promotes mitotic exit by inhibiting the spindle position checkpoint kinase Kin4. J Cell Biol 193(6):1033–1048. doi:10.1083/jcb.201101056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi E, Park HO (2012) Cell polarization and cytokinesis in budding yeast. Genetics 191(2):347–387. doi:10.1534/genetics.111.132886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridges AA, Gladfelter AS (2015) Septin form and function at the cell cortex. J Biol Chem 290(28):17173–17180. doi:10.1074/jbc.R114.634444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns S, Avena JS, Unruh JR, Yu Z, Smith SE, Slaughter BD, Winey M, Jaspersen SL (2015) Structured illumination with particle averaging reveals novel roles for yeast centrosome components during duplication. eLife:4. doi:10.7554/eLife.08586

  • Buttery SM, Yoshida S, Pellman D (2007) Yeast formins Bni1 and Bnr1 utilize different modes of cortical interaction during the assembly of actin cables. Mol Biol Cell 18(5):1826–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byers B (1981) Cytology of the yeast life cycle. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces: life cycle and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 59–96

    Google Scholar 

  • Byers B, Goetsch L (1975) Behavior of spindles and spindle plaques in the cell cycle and conjugation of Saccharomyces cerevisiae. J Bacteriol 124(1):511–523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carminati JL, Stearns T (1997) Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J Cell Biol 138(3):629–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillon GA, Adames NR, Rosello CH, Seidel HS, Longtine MS, Cooper JA, Heil-Chapdelaine RA (2003) Septins have a dual role in controlling mitotic exit in budding yeast. Curr Biol 13(8):654–658

    Article  CAS  PubMed  Google Scholar 

  • Caydasi AK, Pereira G (2009) Spindle alignment regulates the dynamic association of checkpoint proteins with yeast spindle pole bodies. Dev Cell 16(1):146–156. doi:10.1016/j.devcel.2008.10.013

    Article  CAS  PubMed  Google Scholar 

  • Caydasi AK, Pereira G (2012) SPOC alert—when chromosomes get the wrong direction. Exp Cell Res 318(12):1421–1427. doi:S0014-4827(12)00167-X [pii] 10.1016/j.yexcr.2012.03.031

    Article  CAS  PubMed  Google Scholar 

  • Caydasi AK, Kurtulmus B, Orrico MI, Hofmann A, Ibrahim B, Pereira G (2010) Elm1 kinase activates the spindle position checkpoint kinase Kin4. J Cell Biol 190(6):975–989. doi:10.1083/jcb.201006151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caydasi AK, Lohel M, Grunert G, Dittrich P, Pereira G, Ibrahim B (2012) A dynamical model of the spindle position checkpoint. Mol Syst Biol 8:582. doi:10.1038/msb.2012.15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caydasi AK, Micoogullari Y, Kurtulmus B, Palani S, Pereira G (2014) The 14-3-3 protein Bmh1 functions in the spindle position checkpoint by breaking Bfa1 asymmetry at yeast centrosomes. Mol Biol Cell 25(14):2143–2151. doi:10.1091/mbc.E14-04-0890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cepeda-Garcia C, Delgehyr N, Ortiz MA, ten Hoopen R, Zhiteneva A, Segal M (2010) Actin-mediated delivery of astral microtubules instructs Kar9p asymmetric loading to the bud-ward spindle pole. Mol Biol Cell 21(15):2685–2695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan LY, Amon A (2009) The protein phosphatase 2A functions in the spindle position checkpoint by regulating the checkpoint kinase Kin4. Genes Dev 23(14):1639–1649. doi:10.1101/gad.1804609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan LY, Amon A (2010) Spindle position is coordinated with cell-cycle progression through establishment of mitotic exit-activating and -inhibitory zones. Mol Cell 39(3):444–454. doi:10.1016/j.molcel.2010.07.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chant J, Mischke M, Mitchell E, Herskowitz I, Pringle JR (1995) Role of Bud3p in producing the axial budding pattern of yeast. J Cell Biol 129(3):767–778

    Article  CAS  PubMed  Google Scholar 

  • Chesarone MA, DuPage AG, Goode BL (2010) Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat Rev Mol Cell Biol 11(1):62–74

    Article  CAS  PubMed  Google Scholar 

  • Chia W, Somers WG, Wang HY (2008) Drosophila neuroblast asymmetric divisions: cell cycle regulators, asymmetric protein localization, and tumorigenesis. J Cell Biol 180(2):267–272. doi:10.1083/jcb.200708159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conduit PT, Raff JW (2010) Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in Drosophila neuroblasts. Curr Biol 20(24):2187–2192. doi:S0960-9822(10)01521-6 [pii] 10.1016/j.cub.2010.11.055

    Article  CAS  PubMed  Google Scholar 

  • Conduit PT, Wainman A, Raff JW (2015) Centrosome function and assembly in animal cells. Nat Rev Mol Cell Biol 16(10):611–624. doi:10.1038/nrm4062

    Article  CAS  PubMed  Google Scholar 

  • Cuschieri L, Miller R, Vogel J (2006) Gamma-tubulin is required for proper recruitment and assembly of Kar9-Bim1 complexes in budding yeast. Mol Biol Cell 17(10):4420–4434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Aquino KE, Monje-Casas F, Paulson J, Reiser V, Charles GM, Lai L, Shokat KM, Amon A (2005) The protein kinase Kin4 inhibits exit from mitosis in response to spindle position defects. Mol Cell 19(2):223–234. doi:10.1016/j.molcel.2005.06.005

    Article  PubMed  CAS  Google Scholar 

  • Delgehyr N, Lopes CS, Moir CA, Huisman SM, Segal M (2008) Dissecting the involvement of formins in Bud6p-mediated cortical capture of microtubules in S. cerevisiae. J Cell Sci 121(Pt 22):3803–3814

    Article  CAS  PubMed  Google Scholar 

  • Elserafy M, Saric M, Neuner A, Lin TC, Zhang WL, Seybold C, Sivashanmugam L, Schiebel E (2014) Molecular mechanisms that restrict yeast centrosome duplication to one event per cell cycle. Curr Biol 24(13):1456–1466. doi:10.1016/j.cub.2014.05.032

    Article  CAS  PubMed  Google Scholar 

  • Erlemann S, Neuner A, Gombos L, Gibeaux R, Antony C, Schiebel E (2012) An extended gamma-tubulin ring functions as a stable platform in microtubule nucleation. J Cell Biol 197(1):59–74. doi:10.1083/jcb.201111123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evangelista M, Pruyne D, Amberg DC, Boone C, Bretscher A (2002) Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nat Cell Biol 4(3):260–269

    Article  CAS  PubMed  Google Scholar 

  • Falk JE, Chan LY, Amon A (2011) Lte1 promotes mitotic exit by controlling the localization of the spindle position checkpoint kinase Kin4. Proc Natl Acad Sci U S A 108(31):12584–12590. doi:10.1073/pnas.1107784108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falk JE, Tsuchiya D, Verdaasdonk J, Lacefield S, Bloom K, Amon A (2016) Spatial signals link exit from mitosis to spindle position. eLife 5. doi:10.7554/eLife.14036

  • Fraschini R, Formenti E, Lucchini G, Piatti S (1999) Budding yeast Bub2 is localized at spindle pole bodies and activates the mitotic checkpoint via a different pathway from Mad2. J Cell Biol 145(5):979–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraschini R, D’Ambrosio C, Venturetti M, Lucchini G, Piatti S (2006) Disappearance of the budding yeast Bub2-Bfa1 complex from the mother-bound spindle pole contributes to mitotic exit. J Cell Biol 172(3):335–346. doi:10.1083/jcb.200507162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasic I, Nerurkar P, Meraldi P (2015) Centrosome age regulates kinetochore-microtubule stability and biases chromosome mis-segregation. eLife 4:e07909. doi:10.7554/eLife.07909

    Article  PubMed Central  Google Scholar 

  • Geissler S, Pereira G, Spang A, Knop M, Soues S, Kilmartin J, Schiebel E (1996) The spindle pole body component Spc98p interacts with the gamma-tubulin-like Tub4p of Saccharomyces cerevisiae at the sites of microtubule attachment. Embo J 15(15):3899–3911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geymonat M, Spanos A, Smith SJ, Wheatley E, Rittinger K, Johnston LH, Sedgwick SG (2002) Control of mitotic exit in budding yeast. In vitro regulation of Tem1 GTPase by Bub2 and Bfa1. J Biol Chem 277(32):28439–28445. doi:10.1074/jbc.M202540200

    Article  CAS  PubMed  Google Scholar 

  • Geymonat M, Spanos A, Walker PA, Johnston LH, Sedgwick SG (2003) In vitro regulation of budding yeast Bfa1/Bub2 GAP activity by Cdc5. J Biol Chem 278(17):14591–14594. doi:10.1074/jbc.C300059200

    Article  CAS  PubMed  Google Scholar 

  • Geymonat M, Spanos A, de Bettignies G, Sedgwick SG (2009) Lte1 contributes to Bfa1 localization rather than stimulating nucleotide exchange by Tem1. J Cell Biol 187(4):497–511. doi:10.1083/jcb.200905114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geymonat M, Spanos A, Jensen S, Sedgwick SG (2010) Phosphorylation of Lte1 by Cdk prevents polarized growth during mitotic arrest in S. cerevisiae. J Cell Biol 191(6):1097–1112. doi:10.1083/jcb.201005070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goode BL, Eskin JA, Wendland B (2015) Actin and endocytosis in budding yeast. Genetics 199(2):315–358. doi:10.1534/genetics.112.145540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graziano BR, Jonasson EM, Pullen JG, Gould CJ, Goode BL (2013) Ligand-induced activation of a formin-NPF pair leads to collaborative actin nucleation. J Cell Biol 201(4):595–611. doi:10.1083/jcb.201212059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruneberg U, Campbell K, Simpson C, Grindlay J, Schiebel E (2000) Nud1p links astral microtubule organization and the control of exit from mitosis. EMBO J 19(23):6475–6488. doi:10.1093/emboj/19.23.6475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gryaznova Y, Koca Caydasi A, Malengo G, Sourjik V, Pereira G (2016) A FRET-based study reveals site-specific regulation of spindle position checkpoint proteins at yeast centrosomes. eLife:5. doi:10.7554/eLife.14029

  • Gupta ML Jr, Carvalho P, Roof DM, Pellman D (2006) Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle. Nat Cell Biol 8(9):913–923

    Article  CAS  PubMed  Google Scholar 

  • Haber JE (2012) Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics 191(1):33–64. doi:10.1534/genetics.111.134577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartwell LH (1974) Saccharomyces cerevisiae cell cycle. Bacteriol Rev 38(2):164–198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hofken T, Schiebel E (2002) A role for cell polarity proteins in mitotic exit. EMBO J 21(18):4851–4862

    Article  PubMed  PubMed Central  Google Scholar 

  • Hotz M, Leisner C, Chen D, Manatschal C, Wegleiter T, Ouellet J, Lindstrom D, Gottschling DE, Vogel J, Barral Y (2012a) Spindle pole bodies exploit the mitotic exit network in metaphase to drive their age-dependent segregation. Cell 148(5):958–972. doi:S0092-8674(12)00151-1[pii] 10.1016/j.cell.2012.01.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotz M, Lengefeld J, Barral Y (2012b) The MEN mediates the effects of the spindle assembly checkpoint on Kar9-dependent spindle pole body inheritance in budding yeast. Cell Cycle 11(16):3109–3116. doi:10.4161/cc.21504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howell AS, Lew DJ (2012) Morphogenesis and the cell cycle. Genetics 190(1):51–77. doi:10.1534/genetics.111.128314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howell AS, Savage NS, Johnson SA, Bose I, Wagner AW, Zyla TR, Nijhout HF, Reed MC, Goryachev AB, Lew DJ (2009) Singularity in polarization: rewiring yeast cells to make two buds. Cell 139(4):731–743. doi:10.1016/j.cell.2009.10.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howell AS, Jin M, Wu CF, Zyla TR, Elston TC, Lew DJ (2012) Negative feedback enhances robustness in the yeast polarity establishment circuit. Cell 149(2):322–333. doi:10.1016/j.cell.2012.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu F, Wang Y, Liu D, Li Y, Qin J, Elledge SJ (2001) Regulation of the Bub2/Bfa1 GAP complex by Cdc5 and cell cycle checkpoints. Cell 107(5):655–665

    Article  CAS  PubMed  Google Scholar 

  • Huffaker TC, Thomas JH, Botstein D (1988) Diverse effects of beta-tubulin mutations on microtubule formation and function. J Cell Biol 106(6):1997–2010

    Article  CAS  PubMed  Google Scholar 

  • Huisman SM, Segal M (2005) Cortical capture of microtubules and spindle polarity in budding yeast—where’s the catch? J Cell Sci 118(Pt 3):463–471

    Article  CAS  PubMed  Google Scholar 

  • Huisman SM, Bales OA, Bertrand M, Smeets MF, Reed SI, Segal M (2004) Differential contribution of Bud6p and Kar9p to microtubule capture and spindle orientation in S. cerevisiae. J Cell Biol 167(2):231–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huisman SM, Smeets MF, Segal M (2007) Phosphorylation of Spc110p by Cdc28p-Clb5p kinase contributes to correct spindle morphogenesis in S. cerevisiae. J Cell Sci 120(Pt 3):435–446

    Article  CAS  PubMed  Google Scholar 

  • Hung HF, Hehnly H, Doxsey S (2016) The mother centriole appendage protein cenexin modulates lumen formation through spindle orientation. Curr Biol 26(6):793–801. doi:10.1016/j.cub.2016.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang E, Kusch J, Barral Y, Huffaker TC (2003) Spindle orientation in Saccharomyces cerevisiae depends on the transport of microtubule ends along polarized actin cables. J Cell Biol 161(3):483–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imamura H, Tanaka K, Hihara T, Umikawa M, Kamei T, Takahashi K, Sasaki T, Takai Y (1997) Bni1p and Bnr1p: downstream targets of the Rho family small G-proteins which interact with profilin and regulate actin cytoskeleton in Saccharomyces cerevisiae. EMBO J 16(10):2745–2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Januschke J, Llamazares S, Reina J, Gonzalez C (2011) Drosophila neuroblasts retain the daughter centrosome. Nat Commun 2:243. doi:ncomms1245 [pii] 10.1038/ncomms1245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Januschke J, Reina J, Llamazares S, Bertran T, Rossi F, Roig J, Gonzalez C (2013) Centrobin controls mother-daughter centriole asymmetry in Drosophila neuroblasts. Nat Cell Biol 15(3):241–248. doi:ncb2671 [pii] 10.1038/ncb2671

    Article  CAS  PubMed  Google Scholar 

  • Jensen S, Geymonat M, Johnson AL, Segal M, Johnston LH (2002) Spatial regulation of the guanine nucleotide exchange factor Lte1 in Saccharomyces cerevisiae. J Cell Sci 115(Pt 24):4977–4991

    Article  CAS  PubMed  Google Scholar 

  • Juanes MA, Piatti S (2016) The final cut: cell polarity meets cytokinesis at the bud neck in S. cerevisiae. Cell Mol Life Sci. doi:10.1007/s00018-016-2220-3

    PubMed  PubMed Central  Google Scholar 

  • Juanes MA, Twyman H, Tunnacliffe E, Guo Z, ten Hoopen R, Segal M (2013) Spindle pole body history intrinsically links pole identity with asymmetric fate in budding yeast. Curr Biol 23(14):1310–1319. doi:10.1016/j.cub.2013.05.057

    Article  CAS  PubMed  Google Scholar 

  • Keck JM, Jones MH, Wong CCL, Binkley J, Chen DC, Jaspersen SL, Holinger EP, Xu T, Niepel M, Rout MP, Vogel J, Sidow A, Yates JR, Winey M (2011) A cell cycle phosphoproteome of the yeast centrosome. Science 332(6037):1557–1561. doi:10.1126/science.1205193

    Article  CAS  PubMed  Google Scholar 

  • Knop M, Schiebel E (1997) Spc98p and Spc97p of the yeast gamma-tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p. EMBO J 16(23):6985–6995. doi:10.1093/emboj/16.23.6985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knop M, Schiebel E (1998) Receptors determine the cellular localization of a gamma-tubulin complex and thereby the site of microtubule formation. EMBO J 17(14):3952–3967. doi:10.1093/emboj/17.14.3952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knop M, Pereira G, Geissler S, Grein K, Schiebel E (1997) The spindle pole body component Spc97p interacts with the gamma-tubulin of Saccharomyces cerevisiae and functions in microtubule organization and spindle pole body duplication. EMBO J 16(7):1550–1564. doi:10.1093/emboj/16.7.1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozubowski L, Saito K, Johnson JM, Howell AS, Zyla TR, Lew DJ (2008) Symmetry-breaking polarization driven by a Cdc42p GEF-PAK complex. Curr Biol 18(22):1719–1726. doi:10.1016/j.cub.2008.09.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laan L, Pavin N, Husson J, Romet-Lemonne G, van Duijn M, LĂłpez MP, Vale RD, JĂĽlicher F, Reck-Peterson SL, Dogterom M (2012) Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters. Cell 148(3):502–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R (1999) Bifurcation of the mitotic checkpoint pathway in budding yeast. Proc Natl Acad Sci U S A 96(9):4989–4994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R (2013) The art of choreographing asymmetric cell division. Dev Cell 25(5):439–450. doi:10.1016/j.devcel.2013.05.003

    Article  CAS  PubMed  Google Scholar 

  • Liakopoulos D, Kusch J, Grava S, Vogel J, Barral Y (2003) Asymmetric loading of Kar9 onto spindle poles and microtubules ensures proper spindle alignment. Cell 112(4):561–574

    Article  CAS  PubMed  Google Scholar 

  • Lin TC, Gombos L, Neuner A, Sebastian D, Olsen JV, Hrle A, Benda C, Schiebel E (2011) Phosphorylation of the yeast gamma-tubulin Tub4 regulates microtubule function. Plos One 6(5). doi:ARTN e19700 10.1371/journal.pone.0019700

    Google Scholar 

  • Lin TC, Neuner A, Schlosser YT, Scharf AN, Weber L, Schiebel E (2014) Cell-cycle dependent phosphorylation of yeast pericentrin regulates gamma-TuSC-mediated microtubule nucleation. eLife 3:e02208. doi:10.7554/eLife.02208

    PubMed  PubMed Central  Google Scholar 

  • Lin TC, Neuner A, Schiebel E (2015) Targeting of gamma-tubulin complexes to microtubule organizing centers: conservation and divergence. Trends Cell Biol 25(5):296–307. doi:10.1016/j.tcb.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  • Lord M, Yang MC, Mischke M, Chant J (2000) Cell cycle programs of gene expression control morphogenetic protein localization. J Cell Biol 151(7):1501–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maekawa H, Schiebel E (2004) Cdk1-Clb4 controls the interaction of astral microtubule plus ends with subdomains of the daughter cell cortex. Genes Dev 18(14):1709–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maekawa H, Priest C, Lechner J, Pereira G, Schiebel E (2007) The yeast centrosome translates the positional information of the anaphase spindle into a cell cycle signal. J Cell Biol 179(3):423–436. doi:10.1083/jcb.200705197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marschall LG, Jeng RL, Mulholland J, Stearns T (1996) Analysis of Tub4p, a yeast gamma-tubulin-like protein: implications for microtubule-organizing center function. J Cell Biol 134(2):443–454. doi:10.1083/jcb.134.2.443

    Article  CAS  PubMed  Google Scholar 

  • McIntosh JR, O'Toole ET (1999) Life cycles of yeast spindle pole bodies: getting microtubules into a closed nucleus. Biol Cell 91(4–5):305–312. doi:S0248-4900(99)80091-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Meitinger F, Richter H, Heisel S, Hub B, Seufert W, Pereira G (2013) A safeguard mechanism regulates Rho GTPases to coordinate cytokinesis with the establishment of cell polarity. PLoS Biol 11(2):e1001495. doi:10.1371/journal.pbio.1001495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meitinger F, Khmelinskii A, Morlot S, Kurtulmus B, Palani S, Andres-Pons A, Hub B, Knop M, Charvin G, Pereira G (2014) A memory system of negative polarity cues prevents replicative aging. Cell 159(5):1056–1069. doi:10.1016/j.cell.2014.10.014

    Article  CAS  PubMed  Google Scholar 

  • Menendez-Benito V, van Deventer SJ, Jimenez-Garcia V, Roy-Luzarraga M, van Leeuwen F, Neefjes J (2013) Spatiotemporal analysis of organelle and macromolecular complex inheritance. Proc Natl Acad Sci U S A 110(1):175–180. doi:1207424110 [pii] 10.1073/pnas.1207424110

    Article  CAS  PubMed  Google Scholar 

  • Monje-Casas F, Amon A (2009) Cell polarity determinants establish asymmetry in MEN signaling. Dev Cell 16(1):132–145. doi:10.1016/j.devcel.2008.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore JK, Cooper JA (2010) Coordinating mitosis with cell polarity: molecular motors at the cell cortex. Semin Cell Dev Biol 21(3):283–289. doi:S1084-9521(10)00021-2 [pii] 10.1016/j.semcdb.2010.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore JK, Miller RK (2007) The CDK, Cdc28p, regulates multiple aspects of Kar9p function in yeast. Mol Biol Cell 18(4):1187–1202. doi:10.1091/mbc.E06-04-0360

  • Moore JK, Magidson V, Khodjakov A, Cooper JA (2009a) The spindle position checkpoint requires positional feedback from cytoplasmic microtubules. Curr Biol 19(23):2026–2030. doi:10.1016/j.cub.2009.10.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore JK, Stuchell-Brereton MD, Cooper JA (2009b) Function of dynein in budding yeast: mitotic spindle positioning in a polarized cell. Cell Motil Cytoskeleton 66(8):546–555. doi:10.1002/cm.20364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore JK, Chudalayandi P, Heil-Chapdelaine RA, Cooper JA (2010) The spindle position checkpoint is coordinated by the Elm1 kinase. J Cell Biol 191(3):493–503. doi:10.1083/jcb.201006092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moseley JB, Goode BL (2006) The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol Mol Biol Rev 70(3):605–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson SA, Cooper JA (2007) A novel pathway that coordinates mitotic exit with spindle position. Mol Biol Cell 18(9):3440–3450. doi:10.1091/mbc.E07-03-0242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Toole ET, Mastronarde DN, Giddings TH Jr, Winey M, Burke DJ, McIntosh JR (1997) Three-dimensional analysis and ultrastructural design of mitotic spindles from the cdc20 mutant of Saccharomyces cerevisiae. Mol Biol Cell 8(1):1–11

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Toole ET, Winey M, McIntosh JR (1999) High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae. Mol Biol Cell 10(6):2017–2031

    Article  PubMed  PubMed Central  Google Scholar 

  • Okada K, Bartolini F, Deaconescu AM, Moseley JB, Dogic Z, Grigorieff N, Gundersen GG, Goode BL (2010) Adenomatous polyposis coli protein nucleates actin assembly and synergizes with the formin mDia1. J Cell Biol 189(7):1087–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer RE, Sullivan DS, Huffaker T, Koshland D (1992) Role of astral microtubules and actin in spindle orientation and migration in the budding yeast, Saccharomyces cerevisiae. J Cell Biol 119(3):583–593

    Article  CAS  PubMed  Google Scholar 

  • Pearson CG, Bloom K (2004) Dynamic microtubules lead the way for spindle positioning. Nat Rev Mol Cell Biol 5(6):481–492

    Article  CAS  PubMed  Google Scholar 

  • Pereira G, Schiebel E (2005) Kin4 kinase delays mitotic exit in response to spindle alignment defects. Mol Cell 19(2):209–221. doi:10.1016/j.molcel.2005.05.030

    Article  CAS  PubMed  Google Scholar 

  • Pereira G, Yamashita YM (2011) Fly meets yeast: checking the correct orientation of cell division. Trends Cell Biol 21(9):526–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira G, Knop M, Schiebel E (1998) Spc98p directs the yeast gamma-tubulin complex into the nucleus and is subject to cell cycle-dependent phosphorylation on the nuclear side of the spindle pole body. Mol Biol Cell 9(4):775–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira G, Grueneberg U, Knop M, Schiebel E (1999) Interaction of the yeast gamma-tubulin complex-binding protein Spc72p with Kar1p is essential for microtubule function during karyogamy. EMBO J 18(15):4180–4195. doi:10.1093/emboj/18.15.4180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira G, Hofken T, Grindlay J, Manson C, Schiebel E (2000) The Bub2p spindle checkpoint links nuclear migration with mitotic exit. Mol Cell 6(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Pereira G, Tanaka TU, Nasmyth K, Schiebel E (2001) Modes of spindle pole body inheritance and segregation of the Bfa1p-Bub2p checkpoint protein complex. EMBO J 20(22):6359–6370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira G, Manson C, Grindlay J, Schiebel E (2002) Regulation of the Bfa1p-Bub2p complex at spindle pole bodies by the cell cycle phosphatase Cdc14p. J Cell Biol 157(3):367–379. doi:10.1083/jcb.200112085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pringle JR, Bi E, Harkins HA, Zahner JE, De Virgilio C, Chant J, Corrado K, Fares H (1995) Establishment of cell polarity in yeast. Cold Spring Harb Symp Quant Biol 60:729–744

    Article  CAS  PubMed  Google Scholar 

  • Pruyne D, Evangelista M, Yang C, Bi E, Zigmond S, Bretscher A, Boone C (2002) Role of formins in actin assembly: nucleation and barbed-end association. Science 297(5581):612–615

    Article  CAS  PubMed  Google Scholar 

  • Pruyne D, Gao L, Bi E, Bretscher A (2004) Stable and dynamic axes of polarity use distinct formin isoforms in budding yeast. Mol Biol Cell 15(11):4971–4989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebollo E, Sampaio P, Januschke J, Llamazares S, Varmark H, Gonzalez C (2007) Functionally unequal centrosomes drive spindle orientation in asymmetrically dividing Drosophila neural stem cells. Dev Cell 12(3):467–474

    Article  CAS  PubMed  Google Scholar 

  • Rock JM, Amon A (2011) Cdc15 integrates Tem1 GTPase-mediated spatial signals with Polo kinase-mediated temporal cues to activate mitotic exit. Genes Dev 25(18):1943–1954. doi:10.1101/gad.17257711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rock JM, Lim D, Stach L, Ogrodowicz RW, Keck JM, Jones MH, Wong CCL, Yates JR, Winey M, Smerdon SJ, Yaffe MB, Amon A (2013) Activation of the yeast hippo pathway by phosphorylation-dependent assembly of signaling complexes. Science 340(6134):871–875. doi:10.1126/science.1235822

    Article  CAS  PubMed  Google Scholar 

  • Sagot I, Klee SK, Pellman D (2002) Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat Cell Biol 4(1):42–50

    CAS  PubMed  Google Scholar 

  • Scarfone I, Venturetti M, Hotz M, Lengefeld J, Barral Y, Piatti S (2015) Asymmetry of the budding yeast Tem1 GTPase at spindle poles is required for spindle positioning but not for mitotic exit. Plos Genet 11(2):e1004938. doi:10.1371/journal.pgen.1004938

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schiebel E (2000) Gamma-tubulin complexes: binding to the centrosome, regulation and microtubule nucleation. Curr Opin Cell Biol 12(1):113–118. doi:S0955-0674(99)00064-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Schweiggert J, Stevermann L, Panigada D, Kammerer D, Liakopoulos D (2016) Regulation of a spindle positioning factor at kinetochores by SUMO-targeted ubiquitin ligases. Dev Cell 36(4):415–427. doi:10.1016/j.devcel.2016.01.011

    Article  CAS  PubMed  Google Scholar 

  • Segal M, Bloom K (2001) Control of spindle polarity and orientation in Saccharomyces cerevisiae. Trends Cell Biol 11(4):160–166

    Article  CAS  PubMed  Google Scholar 

  • Segal M, Clarke DJ, Reed SI (1998) Clb5-associated kinase activity is required early in the spindle pathway for correct preanaphase nuclear positioning in Saccharomyces cerevisiae. J Cell Biol 143(1):135–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segal M, Bloom K, Reed SI (2000a) Bud6 directs sequential microtubule interactions with the bud tip and bud neck during spindle morphogenesis in Saccharomyces cerevisiae. Mol Biol Cell 11(11):3689–3702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segal M, Clarke DJ, Maddox P, Salmon ED, Bloom K, Reed SI (2000b) Coordinated spindle assembly and orientation requires Clb5p-dependent kinase in budding yeast. J Cell Biol 148(3):441–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segal M, Bloom K, Reed SI (2002) Kar9p-independent microtubule capture at Bud6p cortical sites primes spindle polarity before bud emergence in Saccharomyces cerevisiae. Mol Biol Cell 13(12):4141–4155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seshan A, Amon A (2005) Ras and the Rho effector Cla4 collaborate to target and anchor Lte1 at the bud cortex. Cell Cycle 4(7):940–946

    Article  CAS  PubMed  Google Scholar 

  • Seybold C, Elserafy M, Ruthnick D, Ozboyaci M, Neuner A, Flottmann B, Heilemann M, Wade RC, Schiebel E (2015) Kar1 binding to Sfi1 C-terminal regions anchors the SPB bridge to the nuclear envelope. J Cell Biol 209(6):843–861. doi:10.1083/jcb.201412050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw SL, Yeh E, Maddox P, Salmon ED, Bloom K (1997) Astral microtubule dynamics in yeast: a microtubule-based searching mechanism for spindle orientation and nuclear migration into the bud. J Cell Biol 139(4):985–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobel SG, Snyder M (1995) Highly divergent gamma-tubulin gene is essential for cell growth and proper microtubule organization in Saccharomyces cerevisiae. J Cell Biol 131(6):1775–1788. doi:10.1083/jcb.131.6.1775

    Article  CAS  PubMed  Google Scholar 

  • Su X, Qiu W, Gupta ML Jr, Pereira-Leal JB, Reck-Peterson SL, Pellman D (2011) Mechanisms underlying the dual-mode regulation of microtubule dynamics by Kip3/kinesin-8. Mol Cell 43(5):751–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ten Hoopen R, Cepeda-Garcia C, Fernandez-Arruti R, Juanes MA, Delgehyr N, Segal M (2012) Mechanism for astral microtubule capture by cortical Bud6p priming spindle polarity in S. cerevisiae. Curr Biol 22(12):1075–1083. doi:10.1016/j.cub.2012.04.059

    Article  CAS  PubMed  Google Scholar 

  • Theesfeld CL, Irazoqui JE, Bloom K, Lew DJ (1999) The role of actin in spindle orientation changes during the Saccharomyces cerevisiae cell cycle. J Cell Biol 146(5):1019–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong Z, Gao XD, Howell AS, Bose I, Lew DJ, Bi E (2007) Adjacent positioning of cellular structures enabled by a Cdc42 GTPase-activating protein-mediated zone of inhibition. J Cell Biol 179(7):1375–1384. doi:10.1083/jcb.200705160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valerio-Santiago M, Monje-Casas F (2011) Tem1 localization to the spindle pole bodies is essential for mitotic exit and impairs spindle checkpoint function. J Cell Biol 192(4):599–614. doi:10.1083/jcb.201007044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visintin R, Amon A (2001) Regulation of the mitotic exit protein kinases Cdc15 and Dbf2. Mol Biol Cell 12(10):2961–2974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Tsai JW, Imai JH, Lian WN, Vallee RB, Shi SH (2009) Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 461(7266):947–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss EL (2012) Mitotic exit and separation of mother and daughter cells. Genetics 192(4):1165–1202. doi:10.1534/genetics.112.145516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winey M, Bloom K (2012) Mitotic spindle form and function. Genetics 190(4):1197–1224. doi:190/4/1197 [pii] 10.1534/genetics.111.128710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winey M, Mamay CL, O’Toole ET, Mastronarde DN, Giddings TH Jr, McDonald KL, McIntosh JR (1995) Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J Cell Biol 129(6):1601–1615

    Article  CAS  PubMed  Google Scholar 

  • Woods B, Kuo CC, Wu CF, Zyla TR, Lew DJ (2015) Polarity establishment requires localized activation of Cdc42. J Cell Biol 211(1):19–26. doi:10.1083/jcb.201506108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CF, Savage NS, Lew DJ (2013) Interaction between bud-site selection and polarity-establishment machineries in budding yeast. Philos Trans R Soc London B Biol Sci 368(1629):20130006. doi:10.1098/rstb.2013.0006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu CF, Chiou JG, Minakova M, Woods B, Tsygankov D, Zyla TR, Savage NS, Elston TC, Lew DJ (2015) Role of competition between polarity sites in establishing a unique front. eLife 4. doi:10.7554/eLife.11611

  • Yamashita YM, Mahowald AP, Perlin JR, Fuller MT (2007) Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 315(5811):518–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh E, Yang C, Chin E, Maddox P, Salmon ED, Lew DJ, Bloom K (2000) Dynamic positioning of mitotic spindles in yeast: role of microtubule motors and cortical determinants. Mol Biol Cell 11(11):3949–3961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H, Pruyne D, Huffaker TC, Bretscher A (2000) Myosin V orientates the mitotic spindle in yeast. Nature 406(6799):1013–1015

    Article  CAS  PubMed  Google Scholar 

  • Yoder TJ, Pearson CG, Bloom K, Davis TN (2003) The Saccharomyces cerevisiae spindle pole body is a dynamic structure. Mol Biol Cell 14(8):3494–3505. doi:10.1091/mbc.E02-10-0655 E02-10-0655 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida S, Asakawa K, Toh-e A (2002) Mitotic exit network controls the localization of Cdc14 to the spindle pole body in Saccharomyces cerevisiae. Curr Biol 12(11):944–950

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Ichihashi R, Toh-e A (2003) Ras recruits mitotic exit regulator Lte1 to the bud cortex in budding yeast. J Cell Biol 161(5):889–897. doi:10.1083/jcb.200301128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Segal, Geymonat, Draviam, Lindon, and Glover laboratories for advice and fruitful discussions. Work in our laboratory has been partly supported by the Wellcome Trust and the Biotechnology and Biological Sciences Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa Segal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Geymonat, M., Segal, M. (2017). Intrinsic and Extrinsic Determinants Linking Spindle Pole Fate, Spindle Polarity, and Asymmetric Cell Division in the Budding Yeast S. cerevisiae . In: Tassan, JP., Kubiak, J. (eds) Asymmetric Cell Division in Development, Differentiation and Cancer. Results and Problems in Cell Differentiation, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-53150-2_3

Download citation

Publish with us

Policies and ethics