Skip to main content

Symmetry Does not Come for Free: Cellular Mechanisms to Achieve a Symmetric Cell Division

  • Chapter
  • First Online:
Asymmetric Cell Division in Development, Differentiation and Cancer

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 61))

Abstract

During mitosis cells can divide symmetrically to proliferate or asymmetrically to generate tissue diversity. While the mechanisms that ensure asymmetric cell division have been extensively studied, it is often assumed that a symmetric cell division is the default outcome of mitosis. Recent studies, however, imply that the symmetric nature of cell division is actively controlled, as they reveal numerous mechanisms that ensure the formation of equal-sized daughter cells as cells progress through cell division. Here we review our current knowledge of these mechanisms and highlight possible key questions in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DW, Errington J (2009) Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol 7:642–653

    Article  CAS  PubMed  Google Scholar 

  • Almonacid M, Ahmed WW, Bussonnier M, Mailly P, Betz T, Voituriez R, Gov NS, Verlhac MH (2015) Active diffusion positions the nucleus in mouse oocytes. Nat Cell Biol 17:470–479

    Article  CAS  PubMed  Google Scholar 

  • Bajaj J, Zimdahl B, Reya T (2015) Fearful symmetry: subversion of asymmetric division in cancer development and progression. Cancer Res 75:792–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baruni JK, Munro EM, von Dassow G (2008) Cytokinetic furrowing in toroidal, binucleate and anucleate cells in C. elegans embryos. J Cell Sci 121:306–316

    Article  CAS  PubMed  Google Scholar 

  • Basto R, Brunk K, Vinadogrova T, Peel N, Franz A, Khodjakov A, Raff JW (2008) Centrosome amplification can initiate tumorigenesis in flies. Cell 133:1032–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell GP, Fletcher GC, Brain R, Thompson BJ (2015) Aurora kinases phosphorylate Lgl to induce mitotic spindle orientation in Drosophila epithelia. Curr Biol 25:61–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bird SL, Heald R, Weis K (2013) RanGTP and CLASP1 cooperate to position the mitotic spindle. Mol Biol Cell 24:2506–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bringmann H, Hyman AA (2005) A cytokinesis furrow is positioned by two consecutive signals. Nature 436:731–734

    Article  CAS  PubMed  Google Scholar 

  • Cadart C, Zlotek-Zlotkiewicz E, Le Berre M, Piel M, Matthews HK (2014) Exploring the function of cell shape and size during mitosis. Dev Cell 29:159–169

    Article  CAS  PubMed  Google Scholar 

  • Canman JC, Cameron LA, Maddox PS, Straight A, Tirnauer JS, Mitchison TJ, Fang G, Kapoor TM, Salmon ED (2003) Determining the position of the cell division plane. Nature 424:1074–1078

    Article  CAS  PubMed  Google Scholar 

  • Carazo-Salas RE, Guarguaglini G, Gruss OJ, Segref A, Karsenti E, Mattaj IW (1999) Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400:178–181

    Article  CAS  PubMed  Google Scholar 

  • Carvalho CA, Moreira S, Ventura G, Sunkel CE, Morais-de-Sa E (2015) Aurora A triggers Lgl cortical release during symmetric division to control planar spindle orientation. Curr Biol 25:53–60

    Article  CAS  PubMed  Google Scholar 

  • Chaigne A, Verlhac MH, Terret ME (2012) Spindle positioning in mammalian oocytes. Exp Cell Res 318:1442–1447

    Article  CAS  PubMed  Google Scholar 

  • Chaigne A, Campillo C, Voituriez R, Gov NS, Sykes C, Verlhac MH, Terret ME (2016) F-actin mechanics control spindle centring in the mouse zygote. Nat Commun 7:10253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charras GT, Yarrow JC, Horton MA, Mahadevan L, Mitchison TJ (2005) Non-equilibration of hydrostatic pressure in blebbing cells. Nature 435:365–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charras GT, Hu CK, Coughlin M, Mitchison TJ (2006) Reassembly of contractile actin cortex in cell blebs. J Cell Biol 175:477–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chew TG, Lorthongpanich C, Ang WX, Knowles BB, Solter D (2012) Symmetric cell division of the mouse zygote requires an actin network. Cytoskeleton 69:1040–1046

    Article  CAS  PubMed  Google Scholar 

  • Collins ES, Balchand SK, Faraci JL, Wadsworth P, Lee WL (2012) Cell cycle-regulated cortical dynein/dynactin promotes symmetric cell division by differential pole motion in anaphase. Mol Biol Cell 23:3380–3390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conklin EG (1917) Effects of centrifugal force on the structure and development of the eggs of crepidula. J Exp Zool 22:311–419

    Article  Google Scholar 

  • Courtois A, Schuh M, Ellenberg J, Hiiragi T (2012) The transition from meiotic to mitotic spindle assembly is gradual during early mammalian development. J Cell Biol 198:357–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cramer LP, Mitchison TJ (1997) Investigation of the mechanism of retraction of the cell margin and rearward flow of nodules during mitotic cell rounding. Mol Biol Cell 8:109–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dehapiot B, Carriere V, Carroll J, Halet G (2013) Polarized Cdc42 activation promotes polar body protrusion and asymmetric division in mouse oocytes. Dev Biol 377:202–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delaunay D, Cortay V, Patti D, Knoblauch K, Dehay C (2014) Mitotic spindle asymmetry: a Wnt/PCP-regulated mechanism generating asymmetrical division in cortical precursors. Cell Rep 6:400–414

    Article  CAS  PubMed  Google Scholar 

  • den Elzen N, Buttery CV, Maddugoda MP, Ren G, Yap AS (2009) Cadherin adhesion receptors orient the mitotic spindle during symmetric cell division in mammalian epithelia. Mol Biol Cell 20:3740–3750

    Article  CAS  Google Scholar 

  • Deng M, Suraneni P, Schultz RM, Li R (2007) The Ran GTPase mediates chromatin signaling to control cortical polarity during polar body extrusion in mouse oocytes. Dev Cell 12:301–308

    Article  CAS  PubMed  Google Scholar 

  • Dumont S, Mitchison TJ (2009) Force and length in the mitotic spindle. Curr Biol 19:R749–R761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumont NA, Wang YX, von Maltzahn J, Pasut A, Bentzinger CF, Brun CE, Rudnicki MA (2015) Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med 21:1455–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durgan J, Kaji N, Jin D, Hall A (2011) Par6B and atypical PKC regulate mitotic spindle orientation during epithelial morphogenesis. J Biol Chem 286:12461–12474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farina F, Gaillard J, Guerin C, Coute Y, Sillibourne J, Blanchoin L, Thery M (2016) The centrosome is an actin-organizing centre. Nat Cell Biol 18:65–75

    Article  CAS  PubMed  Google Scholar 

  • Fink J, Carpi N, Betz T, Betard A, Chebah M, Azioune A, Bornens M, Sykes C, Fetler L, Cuvelier D et al (2011) External forces control mitotic spindle positioning. Nat Cell Biol 13:771–778

    Article  CAS  PubMed  Google Scholar 

  • Fish JL, Kosodo Y, Enard W, Paabo S, Huttner WB (2006) Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc Natl Acad Sci USA 103:10438–10443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganem NJ, Godinho SA, Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460:278–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson WT, Veldhuis JH, Rubinstein B, Cartwright HN, Perrimon N, Brodland GW, Nagpal R, Gibson MC (2011) Control of the mitotic cleavage plane by local epithelial topology. Cell 144:427–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godin JD, Colombo K, Molina-Calavita M, Keryer G, Zala D, Charrin BC, Dietrich P, Volvert ML, Guillemot F, Dragatsis I et al (2010) Huntingtin is required for mitotic spindle orientation and mammalian neurogenesis. Neuron 67:392–406

    Article  CAS  PubMed  Google Scholar 

  • Gotz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788

    Article  PubMed  CAS  Google Scholar 

  • Gruss OJ, Carazo-Salas RE, Schatz CA, Guarguaglini G, Kast J, Wilm M, Le Bot N, Vernos I, Karsenti E, Mattaj IW (2001) Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity. Cell 104:83–93

    Article  CAS  PubMed  Google Scholar 

  • Gruss OJ, Wittmann M, Yokoyama H, Pepperkok R, Kufer T, Sillje H, Karsenti E, Mattaj IW, Vernos I (2002) Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nat Cell Biol 4:871–879

    Article  CAS  PubMed  Google Scholar 

  • Guilgur LG, Prudencio P, Ferreira T, Pimenta-Marques AR, Martinho RG (2012) Drosophila aPKC is required for mitotic spindle orientation during symmetric division of epithelial cells. Development 139:503–513

    Article  CAS  PubMed  Google Scholar 

  • Haeusser DP, Margolin W (2016) Splitsville: structural and functional insights into the dynamic bacterial Z ring. Nat Rev Microbiol 14:305–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao Y, Du Q, Chen X, Zheng Z, Balsbaugh JL, Maitra S, Shabanowitz J, Hunt DF, Macara IG (2010) Par3 controls epithelial spindle orientation by aPKC-mediated phosphorylation of apical Pins. Curr Biol 20:1809–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris A (1973) Location of cellular adhesions to solid substrata. Dev Biol 35:97–114

    Article  CAS  PubMed  Google Scholar 

  • Haydar TF, Ang E Jr, Rakic P (2003) Mitotic spindle rotation and mode of cell division in the developing telencephalon. Proc Natl Acad Sci USA 100:2890–2895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hickson GR, Echard A, O’Farrell PH (2006) Rho-kinase controls cell shape changes during cytokinesis. Curr Biol 16:359–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes AFW (1952) The mitotic cycle; the cytoplasm and nucleus during interphase and mitosis, 1st edn. Butterworths Scientific Publications, London

    Google Scholar 

  • Insolera R, Bazzi H, Shao W, Anderson KV, Shi SH (2014) Cortical neurogenesis in the absence of centrioles. Nat Neurosci 17:1528–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaffe AB, Kaji N, Durgan J, Hall A (2008) Cdc42 controls spindle orientation to position the apical surface during epithelial morphogenesis. J Cell Biol 183:625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jongsma ML, Berlin I, Neefjes J (2015) On the move: organelle dynamics during mitosis. Trends Cell Biol 25:112–124

    Article  CAS  PubMed  Google Scholar 

  • Kalab P, Pu RT, Dasso M (1999) The ran GTPase regulates mitotic spindle assembly. Curr Biol 9:481–484

    Article  CAS  PubMed  Google Scholar 

  • Kaltschmidt JA, Davidson CM, Brown NH, Brand AH (2000) Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system. Nat Cell Biol 2:7–12

    Article  CAS  PubMed  Google Scholar 

  • Kardon JR, Vale RD (2009) Regulators of the cytoplasmic dynein motor. Nat Rev Mol Cell Biol 10:854–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiekebusch D, Thanbichler M (2014) Spatiotemporal organization of microbial cells by protein concentration gradients. Trends Microbiol 22:65–73

    Article  CAS  PubMed  Google Scholar 

  • Kitajima A, Fuse N, Isshiki T, Matsuzaki F (2010) Progenitor properties of symmetrically dividing Drosophila neuroblasts during embryonic and larval development. Dev Biol 347:9–23

    Article  CAS  PubMed  Google Scholar 

  • Kiyomitsu T, Cheeseman IM (2012) Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation. Nat Cell Biol 14:311–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiyomitsu T, Cheeseman IM (2013) Cortical dynein and asymmetric membrane elongation coordinately position the spindle in anaphase. Cell 154:391–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoblich JA (2008) Mechanisms of asymmetric stem cell division. Cell 132:583–597

    Article  CAS  PubMed  Google Scholar 

  • Konno D, Shioi G, Shitamukai A, Mori A, Kiyonari H, Miyata T, Matsuzaki F (2008) Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat Cell Biol 10:93–101

    Article  CAS  PubMed  Google Scholar 

  • Kosodo Y, Roper K, Haubensak W, Marzesco AM, Corbeil D, Huttner WB (2004) Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J 23:2314–2324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotak S, Busso C, Gonczy P (2013) NuMA phosphorylation by CDK1 couples mitotic progression with cortical dynein function. EMBO J 32:2517–2529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunda P, Pelling AE, Liu T, Baum B (2008) Moesin controls cortical rigidity, cell rounding, and spindle morphogenesis during mitosis. Curr Biol 18:91–101

    Article  CAS  PubMed  Google Scholar 

  • Kunda P, Rodrigues NT, Moeendarbary E, Liu T, Ivetic A, Charras G, Baum B (2012) PP1-mediated moesin dephosphorylation couples polar relaxation to mitotic exit. Curr Biol 22:231–236

    Article  CAS  PubMed  Google Scholar 

  • Kwon M, Godinho SA, Chandhok NS, Ganem NJ, Azioune A, Thery M, Pellman D (2008) Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 22:2189–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon M, Bagonis M, Danuser G, Pellman D (2015) Direct microtubule-binding by myosin-10 Orients Centrosomes toward Retraction Fibers and Subcortical Actin Clouds. Dev Cell 34:323–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lancaster OM, Le Berre M, Dimitracopoulos A, Bonazzi D, Zlotek-Zlotkiewicz E, Picone R, Duke T, Piel M, Baum B (2013) Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation. Dev Cell 25:270–283

    Article  CAS  PubMed  Google Scholar 

  • Leber B, Maier B, Fuchs F, Chi J, Riffel P, Anderhub S, Wagner L, Ho AD, Salisbury JL, Boutros M, et al. (2010) Proteins required for centrosome clustering in cancer cells. Sci Transl Med 2:33ra38

    Google Scholar 

  • Liu KC, Jacobs DT, Dunn BD, Fanning AS, Cheney RE (2012) Myosin-X functions in polarized epithelial cells. Mol Biol Cell 23:1675–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu MS, Johnston CA (2013) Molecular pathways regulating mitotic spindle orientation in animal cells. Development 140:1843–1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu B, Roegiers F, Jan LY, Jan YN (2001) Adherens junctions inhibit asymmetric division in the Drosophila epithelium. Nature 409:522–525

    Article  CAS  PubMed  Google Scholar 

  • Luxenburg C, Pasolli HA, Williams SE, Fuchs E (2011) Developmental roles for Srf, cortical cytoskeleton and cell shape in epidermal spindle orientation. Nat Cell Biol 13:203–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martynoga B, Drechsel D, Guillemot F (2012) Molecular control of neurogenesis: a view from the mammalian cerebral cortex. Cold Spring Harb Perspect Biol 4:a008359

    Google Scholar 

  • McConnell CH (1930) The mitosis found in Hydra Science. Science 72:170

    Article  CAS  PubMed  Google Scholar 

  • Merdes A, Ramyar K, Vechio JD, Cleveland DW (1996) A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87:447–458

    Article  CAS  PubMed  Google Scholar 

  • Minc N, Burgess D, Chang F (2011) Influence of cell geometry on division-plane positioning. Cell 144:414–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore W, Zhang C, Clarke PR (2002) Targeting of RCC1 to chromosomes is required for proper mitotic spindle assembly in human cells. Curr Biol 12:1442–1447

    Article  CAS  PubMed  Google Scholar 

  • Mora-Bermudez F, Matsuzaki F, Huttner WB (2014) Specific polar subpopulations of astral microtubules control spindle orientation and symmetric neural stem cell division. eLife 3:e02875

    Google Scholar 

  • Morin X, Bellaiche Y (2011) Mitotic spindle orientation in asymmetric and symmetric cell divisions during animal development. Dev Cell 21:102–119

    Article  CAS  PubMed  Google Scholar 

  • Nachury MV, Maresca TJ, Salmon WC, Waterman-Storer CM, Heald R, Weis K (2001) Importin beta is a mitotic target of the small GTPase Ran in spindle assembly. Cell 104:95–106

    Article  CAS  PubMed  Google Scholar 

  • Nguyen-Ngoc T, Afshar K, Gonczy P (2007) Coupling of cortical dynein and G alpha proteins mediates spindle positioning in Caenorhabditis elegans. Nat Cell Biol 9:1294–1302

    Article  CAS  PubMed  Google Scholar 

  • Noatynska A, Gotta M, Meraldi P (2012) Mitotic spindle (DIS)orientation and DISease: cause or consequence? J Cell Biol 199:1025–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor SC, Martinez-Cerdeno V, Kriegstein AR (2008) Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J Comp Neurol 508:28–44

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Connell CB, Wang YL (2000) Mammalian spindle orientation and position respond to changes in cell shape in a dynein-dependent fashion. Mol Biol Cell 11:1765–1774

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohba T, Nakamura M, Nishitani H, Nishimoto T (1999) Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran. Science 284:1356–1358

    Article  CAS  PubMed  Google Scholar 

  • Pease JC, Tirnauer JS (2011) Mitotic spindle misorientation in cancer--out of alignment and into the fire. J Cell Sci 124:1007–1016

    Article  CAS  PubMed  Google Scholar 

  • Piekny AJ, Glotzer M (2008) Anillin is a scaffold protein that links RhoA, actin, and myosin during cytokinesis. Curr Biol 18:30–36

    Article  CAS  PubMed  Google Scholar 

  • Postiglione MP, Juschke C, Xie Y, Haas GA, Charalambous C, Knoblich JA (2011) Mouse inscuteable induces apical-basal spindle orientation to facilitate intermediate progenitor generation in the developing neocortex. Neuron 72:269–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prescott DM (1955) Relations between cell growth and cell division. I. Reduced weight, cell volume, protein content, and nuclear volume of Amoeba proteus from division to division. Exp Cell Res 9:328–337

    Article  CAS  PubMed  Google Scholar 

  • Prescott DM (1956) Relation between cell growth and cell division. II. The effect of cell size on cell growth rate and generation time in Amoeba proteus. Exp Cell Res 11:86–94

    Article  CAS  PubMed  Google Scholar 

  • Quintyne NJ, Reing JE, Hoffelder DR, Gollin SM, Saunders WS (2005) Spindle multipolarity is prevented by centrosomal clustering. Science 307:127–129

    Article  CAS  PubMed  Google Scholar 

  • Rappaport R (1961) Experiments concerning the cleavage stimulus in sand dollar eggs. J Exp Zool 148:81–89

    Article  CAS  PubMed  Google Scholar 

  • Reinsch S, Karsenti E (1994) Orientation of spindle axis and distribution of plasma membrane proteins during cell division in polarized MDCKII cells. J Cell Biol 126:1509–1526

    Article  CAS  PubMed  Google Scholar 

  • Ren X, Weisblat DA (2006) Asymmetrization of first cleavage by transient disassembly of one spindle pole aster in the leech Helobdella robusta. Dev Biol 292:103–115

    Article  CAS  PubMed  Google Scholar 

  • Rieder CL, Khodjakov A, Paliulis LV, Fortier TM, Cole RW, Sluder G (1997) Mitosis in vertebrate somatic cells with two spindles: implications for the metaphase/anaphase transition checkpoint and cleavage. Proc Natl Acad Sci USA 94:5107–5112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues NT, Lekomtsev S, Jananji S, Kriston-Vizi J, Hickson GR, Baum B (2015) Kinetochore-localized PP1-Sds22 couples chromosome segregation to polar relaxation. Nature 524:489–492

    Article  CAS  PubMed  Google Scholar 

  • Sabino D, Gogendeau D, Gambarotto D, Nano M, Pennetier C, Dingli F, Arras G, Loew D, Basto R (2015) Moesin is a major regulator of centrosome behavior in epithelial cells with extra centrosomes. Curr Biol 25:879–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato H, Izutsu K (1974) Birefringence in mitosis of the spermatocyte of grasshopper chrysochraon japonicus. Time-lapse motion picture. George W. Colburn Laboratory, Chicago, IL

    Google Scholar 

  • Schuh M, Ellenberg J (2007) Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 130:484–498

    Article  CAS  PubMed  Google Scholar 

  • Sedzinski J, Biro M, Oswald A, Tinevez JY, Salbreux G, Paluch E (2011) Polar actomyosin contractility destabilizes the position of the cytokinetic furrow. Nature 476:462–466

    Article  CAS  PubMed  Google Scholar 

  • Shuster CB, Burgess DR (2002) Transitions regulating the timing of cytokinesis in embryonic cells. Curr Biol 12:854–858

    Article  CAS  PubMed  Google Scholar 

  • Silverman-Gavrila RV, Hales KG, Wilde A (2008) Anillin-mediated targeting of peanut to pseudocleavage furrows is regulated by the GTPase Ran. Mol Biol Cell 19:3735–3744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung Y, Tzur A, Oh S, Choi W, Li V, Dasari RR, Yaqoob Z, Kirschner MW (2013) Size homeostasis in adherent cells studied by synthetic phase microscopy. Proc Natl Acad Sci USA 110:16687–16692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan CH, Gasic I, Huber-Reggi SP, Dudka D, Barisic M, Maiato H, Meraldi P (2015) The equatorial position of the metaphase plate ensures symmetric cell divisions. eLife 4:e05124

    Google Scholar 

  • Tinevez JY, Schulze U, Salbreux G, Roensch J, Joanny JF, Paluch E (2009) Role of cortical tension in bleb growth. Proc Natl Acad Sci USA 106:18581–18586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolic-Norrelykke IM (2010) Force and length regulation in the microtubule cytoskeleton: lessons from fission yeast. Curr Opin Cell Biol 22:21–28

    Article  CAS  PubMed  Google Scholar 

  • Toyoshima F, Nishida E (2007) Integrin-mediated adhesion orients the spindle parallel to the substratum in an EB1- and myosin X-dependent manner. EMBO J 26:1487–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzur A, Kafri R, LeBleu VS, Lahav G, Kirschner MW (2009) Cell growth and size homeostasis in proliferating animal cells. Science 325:167–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber KL, Sokac AM, Berg JS, Cheney RE, Bement WM (2004) A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature 431:325–329

    Article  CAS  PubMed  Google Scholar 

  • Wee B, Johnston CA, Prehoda KE, Doe CQ (2011) Canoe binds RanGTP to promote Pins(TPR)/Mud-mediated spindle orientation. J Cell Biol 195:369–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiese C, Wilde A, Moore MS, Adam SA, Merdes A, Zheng Y (2001) Role of importin-beta in coupling Ran to downstream targets in microtubule assembly. Science 291:653–656

    Article  CAS  PubMed  Google Scholar 

  • Wilde A, Zheng Y (1999) Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science 284:1359–1362

    Article  CAS  PubMed  Google Scholar 

  • Woolner S, Papalopulu N (2012) Spindle position in symmetric cell divisions during epiboly is controlled by opposing and dynamic apicobasal forces. Dev Cell 22:775–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita YM, Yuan H, Cheng J, Hunt AJ (2010) Polarity in stem cell division: asymmetric stem cell division in tissue homeostasis. Cold Spring Harb Perspect Biol 2:a001313

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi K, Unruh JR, Deng M, Slaughter BD, Rubinstein B, Li R (2011) Dynamic maintenance of asymmetric meiotic spindle position through Arp2/3-complex-driven cytoplasmic streaming in mouse oocytes. Nat Cell Biol 13:1252–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu XJ, Yi Z, Gao Z, Qin D, Zhai Y, Chen X, Ou-Yang Y, Wang ZB, Zheng P, Zhu MS et al (2014) The subcortical maternal complex controls symmetric division of mouse zygotes by regulating F-actin dynamics. Nat Commun 5:4887

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Hughes M, Clarke PR (1999) Ran-GTP stabilises microtubule asters and inhibits nuclear assembly in Xenopus egg extracts. J Cell Sci 112(Pt 14):2453–2461

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Patrick Viollier (University of Geneva) and the Meraldi lab members for critical discussions of the manuscript. P.M. is funded by an SNF-project grant (31003A_160006) and the University of Geneva.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Meraldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dudka, D., Meraldi, P. (2017). Symmetry Does not Come for Free: Cellular Mechanisms to Achieve a Symmetric Cell Division. In: Tassan, JP., Kubiak, J. (eds) Asymmetric Cell Division in Development, Differentiation and Cancer. Results and Problems in Cell Differentiation, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-53150-2_14

Download citation

Publish with us

Policies and ethics