Skip to main content

Modeling Asymmetric Cell Division in Caulobacter crescentus Using a Boolean Logic Approach

  • Chapter
  • First Online:
Asymmetric Cell Division in Development, Differentiation and Cancer

Abstract

Caulobacter crescentus is a model organism for the study of asymmetric division and cell type differentiation, as its cell division cycle generates a pair of daughter cells that differ from one another in their morphology and behavior. One of these cells (called stalked) develops a structure that allows it to attach to solid surfaces and is the only one capable of dividing, while the other (called swarmer) develops a flagellum that allows it to move in liquid media and divides only after differentiating into a stalked cell type. Although many genes, proteins, and other molecules involved in the asymmetric division exhibited by C. crescentus have been discovered and characterized for several decades, it remains as a challenging task to understand how cell properties arise from the high number of interactions between these molecular components. This chapter describes a modeling approach based on the Boolean logic framework that provides a means for the integration of knowledge and study of the emergence of asymmetric division. The text illustrates how the simulation of simple logic models gives valuable insight into the dynamic behavior of the regulatory and signaling networks driving the emergence of the phenotypes exhibited by C. crescentus. These models provide useful tools for the characterization and analysis of other complex biological networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

TF:

Transcription Factor

References

  • Alon U (2006) An introduction to systems biology: design principles of biological circuits. CRC press, Boca Raton

    Google Scholar 

  • Boole G (1848) The calculus of logic. Camb Dublin Math J 3(1848):183–198

    Google Scholar 

  • Chaouiya C, Naldi A, Thieffry D (2012) Logical modelling of gene regulatory networks with GINsim. In: van Helden J, Toussaint A, Thieffry D (eds) Bacterial molecular networks: methods and protocols. Humana Press, New York, pp 463–479

    Chapter  Google Scholar 

  • Chen YE, Tsokos CG, Biondi EG, Perchuk BS, Laub MT (2009) Dynamics of two Phosphorelays controlling cell cycle progression in Caulobacter crescentus. J Bacteriol 191(24):7417–7429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chien P, Perchuk BS, Laub MT, Sauer RT, Baker TA (2007) Direct and adaptor-mediated substrate recognition by an essential AAA+ protease. Proc Natl Acad Sci 104(16):6590–6595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collier J, Murray SR, Shapiro L (2006) DnaA couples DNA replication and the expression of two cell cycle master regulators. EMBO J 25(2):346–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domian IJ, Quon KC, Shapiro L (1997) Cell type-specific phosphorylation and proteolysis of a transcriptional regulator controls the G1-to-S transition in a bacterial cell cycle. Cell 90(3):415–424

    Article  CAS  PubMed  Google Scholar 

  • Domian IJ, Reisenauer A, Shapiro L (1999) Feedback control of a master bacterial cell-cycle regulator. Proc Natl Acad Sci 96(12):6648–6653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • England JC, Perchuk BS, Laub MT, Gober JW (2010) Global regulation of gene expression and cell differentiation in Caulobacter crescentus in response to nutrient availability. J Bacteriol 192(3):819–833

    Article  CAS  PubMed  Google Scholar 

  • Espinosa-Soto C, Padilla-Longoria P, Alvarez-Buylla ER (2004) A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell 16(11):2923–2939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gora KG, Tsokos CG, Chen YE, Srinivasan BS, Perchuk BS, Laub MT (2010) A cell-type-specific protein-protein interaction modulates transcriptional activity of a master regulator in Caulobacter crescentus. Mol cell 39(3):455–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holtzendorff J, Hung D, Brende P, Reisenauer A, Viollier PH, McAdams HH, Shapiro L (2004) Oscillating global regulators control the genetic circuit driving a bacterial cell cycle. Science 304(5673):983–987

    Article  CAS  Google Scholar 

  • Iniesta AA, McGrath PT, Reisenauer A, McAdams HH, Shapiro L (2006) A phospho-signaling pathway controls the localization and activity of a protease complex critical for bacterial cell cycle progression. Proc Natl Acad Sci 103(29):10935–10940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs C, Hung D, Shapiro L (2001) Dynamic localization of a cytoplasmic signal transduction response regulator controls morphogenesis during the Caulobacter cell cycle. Proc Natl Acad Sci 98(7):4095–4100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenal U, Fuchs T (1998) An essential protease involved in bacterial cell cycle control. EMBO J 17(19):5658–5669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen RB (2006) Coordination between chromosome replication, segregation, and cell division in Caulobacter crescentus. J Bacteriol 188(6):2244–2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen RB, Wang SC, Shapiro L (2001) A moving DNA replication factory in Caulobacter crescentus. EMBO J 20(17):4952–4963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Judd EM, Ryan KR, Moerner WE, Shapiro L, McAdams HH (2003) Fluorescence bleaching reveals asymmetric compartment formation prior to cell division in Caulobacter. Proc Natl Acad Sci 100(14):8235–8240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laub MT, Chen SL, Shapiro L, McAdams HH (2002) Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. Proc Natl Acad Sci 99(7):4632–4637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matroule JY, Lam H, Burnette DT, Jacobs-Wagner C (2004) Cytokinesis monitoring during development: rapid pole-to-pole shuttling of a signaling protein by localized kinase and phosphatase in Caulobacter. Cell 118(5):579–590

    Article  CAS  PubMed  Google Scholar 

  • McAdams HH, Shapiro L (2009) System-level design of bacterial cell cycle control Harley. FEBS Lett 583:3984–3991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendoza L (2006) A network model for the control of the differentiation process in Th cells. Biosystems 84(2):101–114

    Article  CAS  PubMed  Google Scholar 

  • Naldi A, Remy E, Thieffry D, Chaouiya C (2009) A reduction of logical regulatory graphs preserving essential dynamical properties. In: Degano P, Gorrieri R (eds) Computational methods in systems biology. Springer, Berlin, pp 24–280

    Google Scholar 

  • Quiñones-Valles C, Sánchez-Osorio I, Martínez-Antonio A (2014) Dynamical Modeling of the Cell Cycle and Cell Fate Emergence in Caulobacter crescentus. PloS One 9(11):e111116

    Article  PubMed  PubMed Central  Google Scholar 

  • Quon KC, Yang B, Domian IJ, Shapiro L, Marczynski GT (1998) Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. Proc Natl Acad Sci 95(1):120–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reisenauer A, Shapiro L (2002) DNA methylation affects the cell cycle transcription of the CtrA global regulator in Caulobacter. EMBO J 21(18):4969–4977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reisenauer A, Kahng LS, McCollum S, Shapiro L (1999a) Bacterial DNA methylation: a cell cycle regulator? J Bacteriol 181(17):5135–5139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reisenauer A, Quon K, Shapiro L (1999b) The CtrA response regulator mediates temporal control of gene expression during the Caulobacter cell cycle. J Bacteriol 181(8):2430–2439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan KR, Shapiro L (2003) Temporal and spatial regulation in prokaryotic cell cycle progression and development. Annu Rev Biochem 72(1):367–394

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Osorio I, Ramos F, Mayorga P, Dantan E (2014) Foundations for modeling the dynamics of gene regulatory networks: a multilevel-perspective review. J Bioinform Comput Biol 12(1):1330003

    Article  PubMed  Google Scholar 

  • Schnell S (ed) (2017) Modeling biochemical reactions: steady-state approximation. Wiley, New York

    Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shmulevich I, Dougherty ER, Kim S, Zhang W (2002) Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2):261–274

    Article  CAS  PubMed  Google Scholar 

  • Subramanian K, Paul MR, Tyson JJ (2013) Potential role of a bistable histidine kinase switch in the asymmetric division cycle of Caulobacter crescentus. PLoS Comput Biol 9(9):e1003221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan MH, Kozdon JB, Shen X, Shapiro L, McAdams HH (2010) An essential transcription factor, SciP, enhances robustness of Caulobacter cell cycle regulation. Proc Natl Acad Sci 107(44):18985–18990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thieffry D, Thomas R (1995) Dynamical behaviour of biological regulatory networks—II. Immunity control in bacteriophage lambda. Bull Math Biol 57(2):277–297

    CAS  PubMed  Google Scholar 

  • Thomas R (1978) Logical analysis of systems comprising feedback loops. J Theor Biol 73(4):631–656

    Article  CAS  PubMed  Google Scholar 

  • Thomas R, D’Ari R (eds) (1990) Biological feedback. CRC-Press, Boca Raton

    Google Scholar 

  • Thompson D, Regev A, Roy S (2015) Comparative analysis of gene regulatory networks: from network reconstruction to evolution. Annu Rev Cell Dev Biol 31:399–428

    Article  CAS  PubMed  Google Scholar 

  • Viollier PH, Sternheim N, Shapiro L (2002) A dynamically localized histidine kinase controls the asymmetric distribution of polar pili proteins. EMBO J 21(17):4420–4428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner JK, Brun YV (2007) Out on a limb: how the Caulobacter stalk can boost the study of bacterial cell shape. Mol Microbiol 64(1):28–33

    Article  CAS  PubMed  Google Scholar 

  • Wang YR, Huang H (2014) Review on statistical methods for gene network reconstruction using expression data. J Theor Biol 362:53–61

    Article  PubMed  Google Scholar 

  • Wheeler RT, Shapiro L (1999) Differential localization of two histidine kinases controlling bacterial cell differentiation. Mol Cell 4(5):683–694

    Article  CAS  PubMed  Google Scholar 

  • Winzeler E, Shapiro L (1996) A novel promoter motif for Caulobacter cell cycle-controlled DNA replication genes. J Mol Biol 264(3):412–425

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewer whose suggestions helped improve and clarify this manuscript and Claudine Chaouiya for critically reading the manuscript and helping with the submission of the model to the GINsim repository. We also thank Laura Carolina Diaz de León and Jaime Obeb Cervantes Pérez for their assistance with the edition of figures. IS-O and CAH-M thank the National Council of Science and Technology (CONACYT México) for postdoctoral and master fellowships, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael Sánchez-Osorio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sánchez-Osorio, I., Hernández-Martínez, C.A., Martínez-Antonio, A. (2017). Modeling Asymmetric Cell Division in Caulobacter crescentus Using a Boolean Logic Approach. In: Tassan, JP., Kubiak, J. (eds) Asymmetric Cell Division in Development, Differentiation and Cancer. Results and Problems in Cell Differentiation, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-53150-2_1

Download citation

Publish with us

Policies and ethics