Skip to main content

Remediation of Pharmaceutical and Personal Care Products (PPCPs) in Constructed Wetlands: Applicability and New Perspectives

  • Chapter
  • First Online:
Phytoremediation

Abstract

Nowadays, wastewater treatment plants (WWTPs) considered not very effective in removing all types of organic compounds, including pharmaceuticals and personal care products (PPCPs). The effluent discharged containing PPCPs shows negative impact on fresh/marine waters, even at vestigial concentrations. The integration of constructed wetlands (CWs) as a biological treatment technology in WWTPs may be an option to effective removal of PPCPs, which is crucial for water bodies’ protection. On the other hand, if they arrive to water bodies it is important to understand the self-restoration capacity of the system. This chapter makes an overview (based on literature and experimental data) about the effectiveness of CWs as a polishing step in WWTPs and the potential to remove contaminants if they arrive to salt marsh areas. In both cases, there is a same principle behind. CWs defined as artificially engineered ecosystems designed and constructed to control biological processes as in natural wetlands, but in a controlled natural environment.

A case study highlights the remediation potential to remove target PPCPs in both environments. Simulated CWs (spiked wastewater) planted with Spartina maritima and light expanded clay aggregates (LECA) as substrate. Simulated salt marsh areas (spiked elutriate soaked in sediment) were planted with the same plant but with sediment as substrate. The presence of a physical support and/or S. maritima decreased contaminant levels either in WWTPs or in estuarine simulated environment. Plant uptake, adsorption to plant roots/sediments and bio/rhizoremediation are strong hypothesis to explain the decrease of contaminants either in CWs or in salt marsh environment. The chapter also discusses the concept of energy production in CWs as a way to increase the competitive advantages of CWs over other treatment systems, by coupling an efficient removal together with a profitable technology, which may decrease WWTP energetic costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Environment Agency (EEA) (2011) Hazardous substances in Europe’s fresh and marine waters–News–EEA, no. 8.

    Google Scholar 

  2. Liu J-L, Wong M-H (2013) Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ Int 59:208–224

    Article  CAS  PubMed  Google Scholar 

  3. Fatta-Kassinos D, Meric S, Nikolaou A (2011) Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Anal Bioanal Chem 399(1):251–275

    Article  CAS  PubMed  Google Scholar 

  4. Carballa M, Omil F, Lema JM, Garc C, Rodr I (2004) Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res 38:2918–2926

    Article  CAS  PubMed  Google Scholar 

  5. Verlicchi P, Al Aukidy M, Zambello E (2012) Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment—a review. Sci Total Environ 429:123–155

    Article  CAS  PubMed  Google Scholar 

  6. Li Y, Zhu G, Ng WJ, Tan SK (2013) A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: design, performance and mechanism. Sci Total Environ 468–469C:908–932

    Google Scholar 

  7. Joss A, Keller E, Alder AC, Göbel A, McArdell CS, Ternes T, Siegrist H (2005) Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res 39:3139–3152

    Article  CAS  PubMed  Google Scholar 

  8. Breitholtz M, Näslund M, Stråe D, Borg H, Grabic R, Fick J (2012) An evaluation of free water surface wetlands as tertiary sewage water treatment of micro-pollutants. Ecotoxicol Environ Saf 78:63–71

    Article  CAS  PubMed  Google Scholar 

  9. Lindström A, Buerge IJ, Poiger T, Bergqvist P-A, Müller MD, Buser H-R (2002) Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environ Sci Technol 36(11):2322–2329

    Article  PubMed  Google Scholar 

  10. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environ Sci Technol 36(6):1202–1211

    Article  CAS  PubMed  Google Scholar 

  11. Blair BD, Crago JP, Hedman CJ, Klaper RD (2013) Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern. Chemosphere 93(9):2116–2123

    Article  CAS  PubMed  Google Scholar 

  12. Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131(1–2):5–17

    Article  CAS  PubMed  Google Scholar 

  13. Fent K, Weston A, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76(2):122–159

    Article  CAS  PubMed  Google Scholar 

  14. Kim S, Choi K (2014) Occurrences, toxicities, and ecological risks of benzophenone-3, a common component of organic sunscreen products: a mini-review. Environ Int 70:143–157

    Article  CAS  PubMed  Google Scholar 

  15. Zhao J-L, Ying G-G, Liu Y-S, Chen F, Yang J-F, Wang L (2010) Occurrence and risks of triclosan and triclocarban in the Pearl River system, South China: from source to the receiving environment. J Hazard Mater 179(1–3):215–222

    Article  CAS  PubMed  Google Scholar 

  16. Drillia P, Stamatelatou K, Lyberatos G (2005) Fate and mobility of pharmaceuticals in solid matrices. Chemosphere 60(8):1034–1044

    Article  CAS  PubMed  Google Scholar 

  17. Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, Liang S, Wang XC (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474:619–641

    Article  PubMed  Google Scholar 

  18. Wu H, Zhang J, Ngo HH, Guo W, Hu Z, Liang S, Fan J, Liu H (2015) A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresour Technol 175:594–601

    Article  CAS  PubMed  Google Scholar 

  19. Vymazal J (2009) The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecol Eng 35(1):1–17

    Article  Google Scholar 

  20. Yang Q, Chen ZH, Zhao JG, Gu BH (2007) Contaminant removal of domestic wastewater by constructed wetlands: effects of plant species. J Integr Plant Biol 49(4):437–446

    Article  CAS  Google Scholar 

  21. Dordio A, Carvalho AJ (2013) Constructed wetlands with light expanded clay aggregates for agricultural wastewater treatment. Sci Total Environ 463–464:454–461

    Article  PubMed  Google Scholar 

  22. Wu S, Wallace S, Brix H, Kuschk P, Kirui WK, Masi F, Dong R (2015) Treatment of industrial effluents in constructed wetlands: challenges, operational strategies and overall performance. Environ Pollut 201:107–120

    Article  CAS  PubMed  Google Scholar 

  23. Nyquist J, Greger M (2009) A field study of constructed wetlands for preventing and treating acid mine drainage. Ecol Eng 35(5):630–642

    Article  Google Scholar 

  24. Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18(5):647–658

    Article  Google Scholar 

  25. Dietz AC, Schnoor JL (2001) Advances in phytoremediation. Environ Health Perspect 109(Suppl):163–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  PubMed  Google Scholar 

  27. Wang C, Zheng S, Wang P, Qian J (2014) Effects of vegetations on the removal of contaminants in aquatic environments: a review. J Hydrodyn Ser B 26(4):497–511

    Article  Google Scholar 

  28. Zhi W, Ji G (2012) Constructed wetlands, 1991-2011: a review of research development, current trends, and future directions. Sci Total Environ 441:19–27

    Article  CAS  PubMed  Google Scholar 

  29. Williams JB (2002) Phytoremediation in wetland ecosystems: progress, problems, and potential. Crit Rev Plant Sci 21(6):607–635

    Article  CAS  Google Scholar 

  30. Vymazal J (2011) Plants used in constructed wetlands with horizontal subsurface flow: a review. Hydrobiologia 674:133–156

    Google Scholar 

  31. Matamoros V, Bayona JM (2006) Elimination of pharmaceuticals and personal care products in subsurface flow constructed wetlands. Environ Sci Technol 40(18):5811–5816

    Article  CAS  PubMed  Google Scholar 

  32. Matamoros V, Arias C, Brix H, Bayona JM (2009) Preliminary screening of small-scale domestic wastewater treatment systems for removal of pharmaceutical and personal care products. Water Res 43(1):55–62

    Article  CAS  PubMed  Google Scholar 

  33. Matamoros V, García J, Bayona JM (2008) Organic micropollutant removal in a full-scale surface flow constructed wetland fed with secondary effluent. Water Res 42(3):653–660

    Article  CAS  PubMed  Google Scholar 

  34. Ávila C, Nivala J, Olsson L, Kassa K, Headley T, Mueller RA, Bayona JM, García J (2014) Emerging organic contaminants in vertical subsurface flow constructed wetlands: influence of media size, loading frequency and use of active aeration. Sci Total Environ 494–495:211–217

    Article  PubMed  Google Scholar 

  35. Carvalho PN, Araújo JL, Mucha AP, Basto MCP, Almeida CMR (2013) Potential of constructed wetlands microcosms for the removal of veterinary pharmaceuticals from livestock wastewater. Bioresour Technol 134:412–416

    Article  CAS  PubMed  Google Scholar 

  36. Dordio A, Carvalho AJP, Teixeira DM, Dias CB, Pinto AP (2010) Removal of pharmaceuticals in microcosm constructed wetlands using Typha spp. and LECA. Bioresour Technol 101(3):886–892

    Article  CAS  PubMed  Google Scholar 

  37. Vymazal J (2008) Constructed wetlands for wastewater treatment: a review. Ecol Eng 73:965–980

    Google Scholar 

  38. Zhang D, Gersberg RM, Ng WJ, Tan SK (2014) Removal of pharmaceuticals and personal care products in aquatic plant-based systems: a review. Environ Pollut 184:620–639

    Article  CAS  PubMed  Google Scholar 

  39. Hijosa-Valsero M, Matamoros V, Sidrach-Cardona R, Martín-Villacorta J, Bécares E, Bayona JM (2010) Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewaters. Water Res 44:3669–3678

    Article  CAS  PubMed  Google Scholar 

  40. Stottmeister U, Wießner A, Kuschk P, Kappelmeyer U, Kästner M, Bederski O, Müller RA, Moormann H (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22(1–2):93–117

    Article  CAS  PubMed  Google Scholar 

  41. Zhang BY, Zheng JS, Sharp RG (2010) Phytoremediation in engineered wetlands: mechanisms and applications. Procedia Environ Sci 2:1315–1325

    Article  Google Scholar 

  42. Reboreda R, Caçador I (2007) Halophyte vegetation influences in salt marsh retention capacity for heavy metals. Environ Pollut 146(1):147–154

    Article  CAS  PubMed  Google Scholar 

  43. Carvalho PN, Rodrigues PNR, Evangelista R, Basto MCP, Vasconcelos MTSD (2011) Can salt marsh plants influence levels and distribution of DDTs in estuarine areas? Estuar Coast Shelf Sci 93(4):415–419

    Article  CAS  Google Scholar 

  44. Zhao C, Xie H, Xu J, Xu X, Zhang J, Hu Z, Liu C, Liang S, Wang Q, Wang J (2015) Bacterial community variation and microbial mechanism of triclosan (TCS) removal by constructed wetlands with different types of plants. Sci Total Environ 505:633–639

    Article  CAS  PubMed  Google Scholar 

  45. Zhang DQ, Hua T, Gersberg RM, Zhu J, Ng WJ, Tan SK (2013) Fate of caffeine in mesocosms wetland planted with Scirpus validus. Chemosphere 90(4):1568–1572

    Google Scholar 

  46. Zhang Y, Geißen SU, Gal C (2008) Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73(8):1151–1161

    Article  CAS  PubMed  Google Scholar 

  47. Carvalho PN, Basto MCP, Almeida CMR (2012) Potential of Phragmites australis for the removal of veterinary pharmaceuticals from aquatic media. Bioresour Technol. 116:497–501

    Article  CAS  PubMed  Google Scholar 

  48. Avila C, Pedescoll A, Matamoros V, Bayona JM, García J (2010) Capacity of a horizontal subsurface flow constructed wetland system for the removal of emerging pollutants: an injection experiment. Chemosphere 81(9):1137–1142

    Article  CAS  PubMed  Google Scholar 

  49. Calheiros CSC, Rangel AOSS, Castro PML (2008) Evaluation of different substrates to support the growth of Typha latifolia in constructed wetlands treating tannery wastewater over long-term operation. Bioresour Technol 99(15):6866–6877

    Article  CAS  PubMed  Google Scholar 

  50. Zhang D, Gersberg RM, Ng WJ, Tan SK (2013) Removal of pharmaceuticals and personal care products in aquatic plant-based systems: a review. Environ. Pollut

    Google Scholar 

  51. Dordio AV, Duarte C, Barreiros M, Carvalho AJP, Pinto AP, da Costa CT (2009) Toxicity and removal efficiency of pharmaceutical metabolite clofibric acid by Typha spp. Potential use for phytoremediation? Bioresour Technol 100(3):1156–1161

    Google Scholar 

  52. Blüthgen N, Zucchi S, Fent K (2012) Effects of the UV filter benzophenone-3 (oxybenzone) at low concentrations in zebrafish (Danio rerio). Toxicol Appl Pharmacol 263(2):184–194

    Article  PubMed  Google Scholar 

  53. Ferreira AR, Guedes P, Mateus EP, Ribeiro AB, Couto N (2017) Comparative assessment of LECA and Spartina maritima to remove emerging organic contaminants from wastewater. Environ Sci Pollut R. doi:10.1007/s11356-017-8452-4

  54. Couto N, Ferreira AR, Guedes P, Mateus E, Ribeiro AB Partition and remediation potential of caffeine, oxybenzone and triclosan in estuarine environment. unpublished

    Google Scholar 

  55. Wu X, Ernst F, Conkle JL, Gan J (2013) Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables. Environ Int 60:15–22

    Article  CAS  PubMed  Google Scholar 

  56. Matamoros V, Nguyen LX, Arias CA, Salvadó V, Brix H (2012) Evaluation of aquatic plants for removing polar microcontaminants: a microcosm experiment. Chemosphere 88(10):1257–1264

    Article  CAS  PubMed  Google Scholar 

  57. Matamoros V, Gutiérrez R, Ferrer I, García J, Bayona JM (2015) Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study. J Hazard Mater 288:34–42

    Article  CAS  PubMed  Google Scholar 

  58. Zhao Y, Collum S, Phelan M, Goodbody T, Doherty L, Hu Y (2013) Preliminary investigation of constructed wetland incorporating microbial fuel cell: batch and continuous flow trials. Chem Eng J 229:364–370

    Article  CAS  Google Scholar 

  59. Strik DPBTB, Hamelers (Bert) HVM, Snel JFH, Buisman CJN (2008) Green electricity production with living plants and bacteria in a fuel cell. Int J Energy Res 32:870–876

    Article  CAS  Google Scholar 

  60. Strik D (2012) Highlights of 4 years FP7 EU PlantPower Project. In: Proceedings 2nd international PlantPower symposium 2012, Wageningen, Netherlands

    Google Scholar 

  61. Liu S, Song H, Li X, Yang F (2013) Power generation enhancement by utilizing plant photosynthate in microbial fuel cell coupled constructed wetland system. Int J Photoenergy 2013:10

    Google Scholar 

  62. “Plant-e.” [Online]. http://www.plant-e.com. Accessed 18 Jan 2015

  63. Yadav AK, Dash P, Mohanty A, Abbassi R, Mishra BK (2012) Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal. Ecol Eng 47:126–131

    Article  Google Scholar 

  64. Srikanth S, Pavani T, Sarma PN, Venkata Mohan S (2011) Synergistic interaction of biocatalyst with bio-anode as a function of electrode materials. Int J Hydrog Energy 36(3):2271–2280

    Article  CAS  Google Scholar 

  65. Srivastava P, Yadav AK, Mishra BK (2015) The effects of microbial fuel cell integration into constructed wetland on the performance of constructed wetland. Bioresour Technol 195:223–230

    Article  CAS  PubMed  Google Scholar 

  66. Doherty L, Zhao Y, Zhao X, Wang W (2015) Nutrient and organics removal from swine slurry with simultaneous electricity generation in an alum sludge-based constructed wetland incorporating microbial fuel cell technology. Chem Eng J 266(610):74–81

    Article  CAS  Google Scholar 

  67. Oon Y-L, Ong S-A, Ho L-N, Wong Y-S, Oon Y-S, Lehl HK, Thung W-E (2015) Hybrid system up-flow constructed wetland integrated with microbial fuel cell for simultaneous wastewater treatment and electricity generation. Bioresour Technol 186:270–275

    Article  CAS  PubMed  Google Scholar 

  68. Villaseñor J, Capilla P, Rodrigo MA, Cañizares P, Fernández FJ (2013) Operation of a horizontal subsurface flow constructed wetland—microbial fuel cell treating wastewater under different organic loading rates. Water Res 47(17):6731–6738

    Article  PubMed  Google Scholar 

  69. Fang Z, Song HL, Cang N, Li XN (2013) Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation. Bioresour Technol 144:165–171

    Article  CAS  PubMed  Google Scholar 

  70. Doherty L, Zhao Y, Zhao X, Hu Y, Hao X, Xu L, Liu R (2015) A review of a recently emerged technology: constructed wetland—microbial fuel cells. Water Res 85:38–45

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank AdP, Dr. Cristina Santos for providing the samples, Eng. Olga Paredes, and the Laboratory of Control and Processes for the assistance. Financial support was provided by UID/AMB/04085/2013 and 4KET4Reuse (SOE1/P1/E0253), co- financed by the European Regional Development Fund (FEDER). The Associacṃão Nacional de Farmácias (ANF), Portugal, is also acknowledged for giving the HPLC. N. Couto acknowledges Fundacṃão para a Ciência e a Tecnologia for her postdoc fellowship (SFRH/BPD/81122/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Rita Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ferreira, A.R., Ribeiro, A., Couto, N. (2017). Remediation of Pharmaceutical and Personal Care Products (PPCPs) in Constructed Wetlands: Applicability and New Perspectives. In: Ansari, A., Gill, S., Gill, R., R. Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-52381-1_9

Download citation

Publish with us

Policies and ethics