Skip to main content

Engineered Nanomaterials for Phytoremediation of Metal/Metalloid-Contaminated Soils: Implications for Plant Physiology

  • Chapter
  • First Online:
Phytoremediation

Abstract

Nanomaterials, including engineered nano-sized iron oxides, manganese oxides, cerium oxides, titanium oxides, or zinc oxides, provide specific affinity for metal/metalloids adsorption and their application is being rapidly extended for environmental management. Their significant surface area, high number of active surface sites, and high adsorption capacities make them very promising as cost-effective amendments for the remediation of contaminated soils. The alleviation of the toxicities of metal/metalloids by their immobilization in the soil stimulates the growth and development of plants during phytoremediation, but there is a body of evidence indicating that nanomaterials themselves can yield both beneficial and harmful effects in plant systems at the physiological, biochemical, nutritional, and genetic levels. Nanoecotoxicological studies are providing a good understanding of their interactions with plants, and an increasing number of publications have attempted to clarify and quantify their potential risks and consequences for plants. However, many results are contradictory and the safety of engineered nanomaterials still represents a barrier to their wide, innovative use in phytoremediation. Both their positive and negative effects on plants will have to be taken into account to evaluate their applicability, and the scientific community faces a challenge to understand deeply the factors which can determine their relevance in environmental science and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. El-Temsah YS, Joner EJ (2013) Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods. Chemosphere 92:131–137

    Article  CAS  PubMed  Google Scholar 

  2. Royal Society and The Royal Academy of Engineering, Nanoscience and Nanotechnology: Opportunities and Uncertainties (2004) The Royal Society. http://www.nanotec.org.uk. Accessed 5 Nov 2015

  3. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability and effects. Environ Toxicol Chem 27:1825–1851

    Article  CAS  PubMed  Google Scholar 

  4. Roy A, Bhattacharya J (2012) Removal of Cu(II), Zn(II) and Pb(II) from water using microwave-assisted synthesized maghemite nanotubes. Chem Eng J 211–212:493–500

    Article  CAS  Google Scholar 

  5. Baruah S, Dutta J (2009) Nanotechnology applications in sensing and pollution degradation in agriculture. Environ Chem Lett 7:191–204

    Article  CAS  Google Scholar 

  6. O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51:104–122

    Article  CAS  Google Scholar 

  7. Agrawal A, Sahu KK (2006) Kinetic and isotherm studies of cadmium adsorption on manganese nodule residue. J Hazard Mater 137:915–924

    Article  CAS  PubMed  Google Scholar 

  8. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331

    Article  PubMed  CAS  Google Scholar 

  10. Bhatt I, Tripathi BN (2011) Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82:308–317

    Article  CAS  PubMed  Google Scholar 

  11. Gómez-Pastora J, Bringas E, Ortiz I (2014) Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chem Eng J 256:187–204

    Article  CAS  Google Scholar 

  12. Dickinson M, Scott TB (2010) The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent. J Hazard Mater 178:171–179

    Article  CAS  PubMed  Google Scholar 

  13. Bommavaram M, Korivi M, Raju Borelli DP, Pabbadhi JD, Nannepag JS (2013) Bacopa monniera stabilized gold nanoparticles (BmGNPs) alleviated the oxidative stress induced by aluminum in albino mice. Drug Invent Today 5:113–118

    Article  CAS  Google Scholar 

  14. Wang Y, Fang Z, Liang B, Pokeung Tsang E (2014) Remediation of hexavalent chromium contaminated soil by stabilized nanoscale zero-valent iron prepared from steel pickling waste liquor. Chem Eng J 247:283–290

    Article  CAS  Google Scholar 

  15. Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198

    Google Scholar 

  16. Fajardo C, Gil-Díaz M, Costa G, Alonso J, Guerrero AM, Nande M, Lobo MC, Martín M (2015) Residual impact of aged nZVI on heavy metal-polluted soils. Sci Total Environ 535:79–84

    Article  CAS  PubMed  Google Scholar 

  17. Nassar NN (2010) Rapid removal and recovery of Pb (II) from wastewater by magnetic nanoadsorbents. J Hazard Mater 184:538–546

    Article  CAS  PubMed  Google Scholar 

  18. Tan Y, Chen M, Hao Y (2012) High efficient removal of Pb (II) by amino functionalized Fe3O4 magnetic nano-particles. Chem Eng J 191:104–111

    Article  CAS  Google Scholar 

  19. Zhang WX (2003) Nanoscale iron particles for environmental remediation. A review. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

  20. Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117:1823–1831

    Article  Google Scholar 

  21. Sánchez A, Recillas S, Font X, Casals E, González E, Puntes V (2011) Ecotoxicity of, and remediation with, engineered inorganic nanoparticles in the environment. Trends Anal Chem 30(3):507–516

    Article  CAS  Google Scholar 

  22. Joo S, Cheng I (2006) Nanotechnology for environmental remediation. Springer, New York

    Google Scholar 

  23. Singh SN, Tripathi RD (2007) Environmental bioremediation technologies. Springer, Berlin

    Book  Google Scholar 

  24. Klabunde KJ, Erickson L, Koper O, Richards R (2010) Review of nanoscale materials in chemistry: environmental applications. In: ACS Symposium Series 1045. American Chemical Society, Washington, DC

    Google Scholar 

  25. Noubactep C, Caré S, Crane R (2012) Nanoscale metallic iron for environmental remediation: prospects and limitations. Water Air Soil Pollut 223:1363–1382

    Article  CAS  PubMed  Google Scholar 

  26. Tang SCN, Lo IMC (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47(8):2613–2632

    Article  CAS  PubMed  Google Scholar 

  27. Capaldi Arruda SC, Diniz Silva AL, Moretto Galazzi R, Antunes Azevedo R, Zezzi Arruda MA (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705

    Article  CAS  Google Scholar 

  28. Juganson K, Ivask A, Blinova I, Mortimer M, Kahru A (2015) NanoE-Tox: new and in-depth database concerning ecotoxicity of nanomaterials. Beilstein J Nanotechnol 6:1788–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  CAS  PubMed  Google Scholar 

  30. Bystrzejewska-Piotrowska G, Golimowski J, Urban PL (2009) Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag 29:2587–2595

    Article  CAS  PubMed  Google Scholar 

  31. Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Manag 28:215–225

    Article  CAS  PubMed  Google Scholar 

  32. Zhang MY, Wang Y, Zhao DY, Pan G (2010) Immobilization of arsenic in soils by stabilized nanoscale zero-valent iron, iron sulfide (FeS), and magnetite (Fe3O4) particles. Chin Sci Bull 55(4–5):365–372

    Article  CAS  Google Scholar 

  33. Shipley HJ, Engates KE, Guettner AM (2011) Study of iron oxide nanoparticles in soil for remediation of arsenic. J Nanopart Res 13(6):2387

    Article  CAS  Google Scholar 

  34. Deliyanni EA, Lazaridis NK, Peleka EN, Matis KA (2004) Metals removal from aqueous solution by iron-based bonding agents. Environ Sci Pollut Res 11:18–21

    Article  CAS  Google Scholar 

  35. Waychunas GA, Kim CS, Banfiled JF (2005) Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J Nanopart Res 7:409–433

    Article  CAS  Google Scholar 

  36. Mohapatra M, Anand S (2010) Synthesis and applications of nano-structured iron oxides/hydroxides—a review. Int J Eng Sci Technol 2(8):127–146

    Google Scholar 

  37. Mueller NC, Nowack B (2010) Nanoparticles for remediation: solving big problems with little particles. Elements 6:395–400

    Article  CAS  Google Scholar 

  38. Komárek M, Vaněk A, Ettler V (2013) Chemical stabilization of metals and arsenic in contaminated soils using oxides—a review. Environ Pollut 172:9–22

    Article  PubMed  CAS  Google Scholar 

  39. Gil-Díaz M, Alonso J, Rodríguez-Valdés E, Pinilla P, Lobo MC (2014) Reducing the mobility of arsenic in brownfield soil using stabilised zero-valent iron nanoparticles. J Environ Sci Health A Tox Hazard Subst Environ Eng 49(12):1361–1369

    Article  PubMed  CAS  Google Scholar 

  40. Liu XM, Zhang FD, Zhang SQ, He XS, Fang R, Feng Z, Wang Y (2010) Effects of nano-ferric oxide on the growth and nutrients absorption of peanut. Plant Nutr Fert Sci 11:14–18

    Google Scholar 

  41. Chen Y-H, Li F-A (2010) Kinetic study on removal of copper(II) using goethite and hematite nano-photocatalysts. J Colloid Interface Sci 347:277–281

    Article  CAS  PubMed  Google Scholar 

  42. Komárek M, Koretsky CM, Stephen KJ, Alessi DS, Chrastný V (2015) Competitive adsorption of Cd(II), Cr(VI), and Pb(II) onto nanomaghemite: a spectroscopic and modeling approach. Environ Sci Technol 49:12851–12859

    Article  PubMed  CAS  Google Scholar 

  43. Auffan M, Rose J, Proux O, Borschneck D, Masion A, Chaurand P, Hazemann JL, Chaneac C, Jolivet JP, Wiesner MR, Van Geen A, Jean-Yves B (2008) Enhanced adsorption of arsenic onto maghemites nanoparticles: As(III) as a probe of the surface structure and heterogeneity. Langmuir 24(7):3215–3222

    Article  CAS  PubMed  Google Scholar 

  44. Prasad B, Ghosh C, Chakraborty A, Bandyopadhyay N, Ray RK (2011) Adsorption of arsenite (As3+) on nano-sized Fe2O3 waste powder from the steel industry. Desalination 274:105–112

    Article  CAS  Google Scholar 

  45. Lin S, Lu D, Liu Z (2012) Removal of arsenic contaminants with magnetic c-Fe2O3 nanoparticles. Chem Eng J 211–212:46–52

    Article  CAS  Google Scholar 

  46. Tuutijarvi T, Vahala R, Sillanpaa M, Chen G (2012) Maghemite nanoparticles for As(V) removal: desorption characteristics and adsorbent recovery. Environ Technol 33(16):1927–1936

    Google Scholar 

  47. Akhbarizadeh R, Shayestefar MR, Darezereshk E (2014) Competitive removal of metals from wastewater by maghemite nanoparticles: a comparison between simulated wastewater and AMD. Mine Water Environ 33:89–96

    Article  CAS  Google Scholar 

  48. Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J (2012) Magnetic nanoparticles and targeted drug delivering. Pharmacol Res 62:144–149

    Article  CAS  Google Scholar 

  49. Jiang W, Pelaez M, Dionysiou DD, Entezari MH, Tsoutsou D, O’Shea K (2013) Chromium(VI) removal by maghemite nanoparticles. Chem Eng J 222:527–533

    Article  CAS  Google Scholar 

  50. Martínez-Fernández D, Vítková M, Bernal MP, Komárek M (2015) Effects of nano-maghemite on trace element accumulation and drought response of Helianthus annuus L. in a contaminated mine soil. Water Air Soil Pollut 226(4):1–4

    Google Scholar 

  51. Vítková M, Komárek M, Tejnecký V, Šillerová H (2015) Interactions of nano-oxides with low-molecular-weight organic acids in a contaminated soil. J Hazard Mater 293:7–14

    Article  PubMed  CAS  Google Scholar 

  52. Martínez-Fernández D, Bingöl D, Komárek M (2014) Trace elements and nutrients adsorption onto nano-maghemite in a contaminated-soil solution: a geochemical/statistical approach. J Hazard Mater 276:271–277

    Article  PubMed  CAS  Google Scholar 

  53. Chowdhury SR, Yanful EK (2010) Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal. J Environ Manage 91:2238–2247

    Article  CAS  PubMed  Google Scholar 

  54. Sposito G (2008) The chemistry of soils, 2nd edn. Oxford University Press, New York 330 p

    Google Scholar 

  55. Wu Z, Gu X, Wang X, Evans L, Guo H (2003) Effects of organic acids on adsorption of lead onto montmorillonite, goethite and humic acid. Environ Pollut 121:469–475

    Article  CAS  PubMed  Google Scholar 

  56. Shen YF, Tang J, Nie ZH, Wang YD, Ren Y, Zuo I (2009) Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Sep Purif Technol 68:312–319

    Article  CAS  Google Scholar 

  57. Afkhami A, Saber-Tehrani M, Bagheri H (2010) Modified maghemite nanoparticles as an efficient adsorbent for removing some cationic dyes from aqueous solution. Desalination 263(1–3):2

    Google Scholar 

  58. Pan BJ, Qiu H, Pan BC, Nie GZ, Xiao LL, Lv L et al (2010) Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(III) oxides: behavior and XPS study. Water Res 44(3):815–824

    Article  CAS  PubMed  Google Scholar 

  59. Dias AM, Hussain A, Marcos AS, Roque AC (2011) A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnol Adv 29(1):142–155

    Article  CAS  PubMed  Google Scholar 

  60. Nazari M, Ghasemi N, Maddah H, Motlagh MM (2014) Synthesis and characterization of maghemite nanopowders by chemical precipitation method. J Nanostruct Chem 4:99

    Article  Google Scholar 

  61. Oliveira LCA, Petkowicz DI, Smaniotto A, Pergher SBC (2004) Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water. Water Res 38:3699–3704

    Article  CAS  PubMed  Google Scholar 

  62. Yavuz CT, Prakash A, Mayo JT, Colvin VL (2009) Magnetic separations: from steel plants to biotechnology. Chem Eng Sci 64:2510–2521

    Article  CAS  Google Scholar 

  63. Andreu JS, Camacho J, Faraudo J, Benelmekki M, Rebollo C, Martínez LM (2011) Simple analytical model for the magnetophoretic separation of superparamagnetic dispersions in a uniform magnetic gradient. Phys Rev E Stat Nonlinear Soft Matter Phys 84:art. no. 021402

    Google Scholar 

  64. Kanel SR, Greneche J-M, Choi H (2006) Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050

    Article  CAS  PubMed  Google Scholar 

  65. Mueller NC, Braun J, Bruns J, Černík M, Rissing P, Rickerby D, Nowack B (2012) Application of nanoscale zero valent iron (nZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19:550–558

    Article  CAS  Google Scholar 

  66. Tosco T, Papani MP, Viggi CC, Sethi P (2014) Nanoscale zerovalent iron particles for groundwater remediation: a review. J Clean Prod 77:10–21

    Article  CAS  Google Scholar 

  67. Alidokht L, Khataee AR, Reyhanitabar A, Oustan S (2011) Cr(VI) immobilization process in a Cr-spiked Soil by zerovalent iron nanoparticles: optimization using response surface methodology. Clean (Weinh) 39(7):633–640

    CAS  Google Scholar 

  68. Fajardo C, Ortíz LT, Rodríguez-Membibre ML, Nande M, Lobo MC, Martin M (2012) Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: a molecular approach. Chemosphere 86:802–808

    Article  CAS  PubMed  Google Scholar 

  69. Gil-Díaz M, Pérez-Sanz A, Vicente MA, Lobo MC (2014) Immobilisation of Pb and Zn in soils using stabilised zero-valent iron nanoparticles: effects on soil properties. Clean Soil Air Water 42(12):1776–1784

    Article  CAS  Google Scholar 

  70. Sun YP, Li XQ, Cao J, Zhang WX, Wang HP (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interface 120:47–56

    Article  CAS  Google Scholar 

  71. Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125

    Article  PubMed  CAS  Google Scholar 

  72. Yan W, Lien H-L, Koel BE, Zhang W-X (2013) Iron nanoparticles for environmental clean-up: recent developments and future outlook. Evnviron Sci Process Impacts 15(1):63–77

    Article  CAS  Google Scholar 

  73. Filip J, Karlický F, Marušák Z, Lazar P, Černík M, Otyepka M, Zbořil R (2014) Anaerobic reaction of nanoscale zerovalent iron with water: mechanism and kinetics. J Phys Chem C 118:13817–13825

    Article  CAS  Google Scholar 

  74. Li X-Q, Zhang W-X (2007) Sequestration of metal cations with zerovalent iron nanoparticles—a study with High Resolution X-ray Photoelectron Spectroscopy (HR-XPS). J Phys Chem C 111:6939–6946

    Article  CAS  Google Scholar 

  75. Hu J, Chen G, Lo IMC (2005) Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res 39:4528–4536

    Article  CAS  PubMed  Google Scholar 

  76. Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156

    Article  CAS  Google Scholar 

  77. Machado S, Pacheco JG, Nouws HPA, Albergaria JT, Delerue-Matos C (2015) Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts. Sci Total Environ 533:76–81

    Article  CAS  PubMed  Google Scholar 

  78. Soukupová J, Zbořil R, Medřík I, Filip J, Šafářová K, Lédl R, Mashlan M, Nosek J, Černík M (2015) Highly concentrated, reactive and stable dispersion of zero-valent iron nanoparticles: direct surface modification and site application. Chem Eng J 262:813–822

    Article  CAS  Google Scholar 

  79. Shi L, Zhang X, Chen Z (2011) Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res 45(2):886

    Article  CAS  PubMed  Google Scholar 

  80. Sun X, Yan Y, Liy Y, Han W, Wang L (2014) SBA-15-incorporated nanoscale zero-valent iron particles for chromium(VI) removal from groundwater: mechanism, effect of pH, humic acid and sustained reactivity. J Hazard Mater 266:26–33

    Article  CAS  PubMed  Google Scholar 

  81. Li Z, Greden K, Alvarez PJJ, Gregory KB, Lowry GV (2010) Adsorbed polymer and NOM limits adhesion and toxicity of nanoscale zerovalent iron to E. coli. Environ Sci Technol 44:3162–3167

    Article  CAS  Google Scholar 

  82. Chrysochoou M, Johnston CP, Dahal G (2012) A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron. J Hazard Mater 201:33–42

    Article  PubMed  CAS  Google Scholar 

  83. Du J, Lu J, Wu Q, Jing C (2012) Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron. J Hazard Mater 215:152–158

    Article  PubMed  CAS  Google Scholar 

  84. Post JE (1999) Manganese oxide minerals: crystal structures and economic and environmental significance. Proc Natl Acad Sci U S A 96:3447–3454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dong DM, Nelson YM, Lion LW, Shuler ML, Ghiorse WC (2000) Adsorption of Pb and Cd onto metal oxides and organic material in natural surface coatings as determined by selective extractions: new evidence for the importance of Mn and Fe oxides. Water Res 34:427–436

    Article  CAS  Google Scholar 

  86. O’Reilly SE, Hochella MF (2003) Lead sorption efficiencies of natural and synthetic Mn and Fe-oxides. Geochim Cosmochim Acta 67:4471–4487

    Article  CAS  Google Scholar 

  87. Essington ME (2004) Soil and water chemistry: an integrative approach. CRC Press, Boca Raton, 534 pp. ISBN: 0-8493-1258-2

    Google Scholar 

  88. Feng XH, Zhai LM, Tan WF, Zhao W, Liu F, He JZ (2006) The controlling effect of pH on oxidation of Cr(III) by manganese oxide minerals. J Colloid Interface Sci 298:258–266

    Article  CAS  PubMed  Google Scholar 

  89. Fandeur D, Juillot F, Morin G, Olivi L, Cognigni A, Webb SM, Ambrosi JP, Fritsch E, Guyot F, Brown GE Jr (2009) XANES evidence for oxidation of Cr(III) to Cr(VI) by Mn-oxides in a lateritic regolith developed on serpentinized ultramafic rocks of New Caledonia. Environ Sci Technol 43:7384–7390

    Article  CAS  PubMed  Google Scholar 

  90. Driehaus W, Seith R, Jekel M (1995) Oxidation of arsenate(III) with manganese oxides in water treatment. Water Res 29:297–305

    Article  CAS  Google Scholar 

  91. Chen Z, Kim KW, Zhu YG, McLaren R, Liu F, He JZ (2006) Adsorption (AsIII,V) and oxidation (AsIII) of arsenic by pedogenic Fe-Mn nodules. Geoderma 136:566–572

    Article  CAS  Google Scholar 

  92. Watanabe J, Tani Y, Chang J, Miyata N, Naitou H, Seyama H (2013) As(III) oxidation kinetics of biogenic manganese oxides formed by Acremonium strictum strain KR21 2. Chem Geol 347:227–232

    Article  CAS  Google Scholar 

  93. Villalobos M, Escobar-Quiroz IN, Salazar-Camacho C (2014) The influence of particle size and structure on the sorption and oxidation behavior of birnessite: I. Adsorption of As(V) and oxidation of As(III). Geochim Cosmochim Acta 125:564–581

    Article  CAS  Google Scholar 

  94. Singh M, Thanh DN, Ulbrich P, Strnadová N, Štěpánek F (2010) Synthesis, characterization and study of arsenate adsorption from aqueous solution by α- and δ-phase manganese dioxide nanoadsorbents. J Solid State Chem 183:2979–2986

    Article  CAS  Google Scholar 

  95. Naderi H, Majles Ara MH, Zebarjadan H, Saydi J, Javidan A (2013) Nonlinear response of nano-particles birnessite-type manganese oxide (γ-MnO2). Optik 124:1560–1563

    Article  CAS  Google Scholar 

  96. Simenyuk GY, Zakharov YA, Pavelko NV, Dodonov VG, Pugachev VM, Puzynin AV, Manina TS, Barnakov CN, Ismagilov ZR (2015) Highly porous carbon materials filled with gold and manganese oxide nanoparticles for electrochemical use. Catal Today 249:220–227

    Article  CAS  Google Scholar 

  97. Zhang X, Miao W, Li C, Sun X, Wang K, Ma Y (2015) Microwave-assisted rapid synthesis of birnessite-type MnO2 nanoparticles for high performance supercapacitor applications. Mater Res Bull 71:111–115

    Article  CAS  Google Scholar 

  98. Villalobos M, Bargar J, Sposito G (2005) Trace metal retention on biogenic manganese oxide nanoparticles. Elements 1:223–226

    Article  CAS  Google Scholar 

  99. Miyata N, Tani Y, Sakata M, Iwahori K (2007) Microbial manganese oxide formation and interaction with toxic metal ions. J Biosci Bioeng 104:1–8

    Article  CAS  PubMed  Google Scholar 

  100. Zhou D, Kim DG, Ko SO (2015) Heavy metal adsorption with biogenic manganese oxides generated by Pseudomonas putida strain MnB1. J Ind Eng Chem 24:132–139

    Article  CAS  Google Scholar 

  101. Tebo BM, Ghiorse WC, van Waasbergen LG, Siering PL, Caspi R (1997) Bacterially mediated mineral formation: insights into manganese(II) oxidation from molecular genetic and biochemical studies. Rev Mineral Geochem 35:225–266

    CAS  Google Scholar 

  102. Morgan JJ (2000) Manganese in natural waters and earth’s crust: its availability to organisms. Met Ions Biol Syst 37:1–34

    CAS  PubMed  Google Scholar 

  103. Nelson YM, Lion LW, Ghiorse WC, Shuler ML (1999) Production of biogenic Mn oxides by Leptothrix discophora SS-1 in a chemically defined growth medium and evaluation of their Pb adsorption characteristics. Appl Environ Microbiol 65:175–180

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Gupta K, Bhattacharya S, Chattopadhyay D, Mukhopadhyay A, Biswas H, Dutta J, Ray NR, Ghosh UC (2011) Ceria associated manganese oxide nanoparticles: synthesis, characterization and arsenic(V) sorption behavior. Chem Eng J 172:219–229

    Article  CAS  Google Scholar 

  105. Lalhmunsiama, Lee SM, Tiwari D (2013) Manganese oxide immobilized activated carbons in the remediation of aqueous wastes contaminated with copper(II) and lead(II). Chem Eng J 225:128–137

    Google Scholar 

  106. Peña J, Bargar JR, Sposito G (2015) Copper sorption by the edge surfaces of synthetic birnessite nanoparticles. Chem Geol 396:196–207

    Article  CAS  Google Scholar 

  107. Yu Z, Zhou L, Huang Y, Song Z, Qiu W (2015) Effects of a manganese oxide-modified biochar composite on adsorption of arsenic in red soil. J Environ Manage 163:155–162

    Article  CAS  PubMed  Google Scholar 

  108. Zhu Q, Li Z (2015) Hydrogel-supported nanosized hydrous manganese dioxide: synthesis, characterization, and adsorption behavior study for Pb2+, Cu2+, Cd2+ and Ni2+ removal from water. Chem Eng J 281:69–80

    Article  CAS  Google Scholar 

  109. Della Puppa L, Komárek M, Bordas F, Bollinger JC, Joussein E (2013) Adsorption of copper, cadmium, lead and zinc onto a synthetic manganese oxide. J Colloid Interface Sci 399:99–106

    Article  CAS  PubMed  Google Scholar 

  110. Michálková Z, Komárek M, Šillerová H, Della Puppa L, Joussein E, Bordas F, Vaněk A, Vaněk O, Ettler V (2014) Evaluating the potential of three Fe- and Mn- (nano)oxides for the stabilization of Cd, Cu and Pb in contaminated soils. J Environ Manage 46:226–234

    Article  CAS  Google Scholar 

  111. Ettler V, Tomášová Z, Komárek M, Mihaljevič M, Šebek O, Michálková Z (2015) The pH-dependent long-term stability of an amorphous manganese oxide in smelter-polluted soils: implication for chemical stabilization of metals and metalloids. J Hazard Mater 286:386–394

    Article  CAS  PubMed  Google Scholar 

  112. Ku Y, Jung LI (2001) Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res 35:135–142

    Article  CAS  PubMed  Google Scholar 

  113. Rengaraj S, Venkataraj S, Yeon JW, Kim Y, Li XZ, Pang GKH (2007) Preparation, characterization and application of Nd–TiO2 photocatalyst for the reduction of Cr(VI) under UV light illumination. Appl Catal 77:157–165

    Article  CAS  Google Scholar 

  114. Kim Y, Joo H, Her N, Yoon Y, Lee C, Yoon Y (2013) Self-rotating photocatalytic system for aqueous Cr(VI) reduction on TiO2 nanotube/Ti mesh substrate. Chem Eng J 229:66–71

    Article  CAS  Google Scholar 

  115. Yang H, Lin YW, Rajeshwar K (1999) Homogeneous and heterogeneous photocatalytic reactions involving As(III) and As(V) species in aqueous media. J Photochem Photobiol 123:137–143

    Article  CAS  Google Scholar 

  116. Hu B, Liu W, Gao W, Han J, Liu H, Lucia LA (2015) Pseudo-Janus Zn/Al-based nanocomposites for Cr(VI) sorption/remediation and evolved photocatalytic functionality. Chem Eng J 277:150–158

    Article  CAS  Google Scholar 

  117. Albadarin AB, Yang Z, Mangwandia C, Glocheuxa Y, Walker G, Ahmad MNM (2014) Experimental design and batch experiments for optimization of Cr(VI) removal from aqueous solutions by hydrous cerium oxide nanoparticles. Chem Eng Res Des 92:1354–1362

    Article  CAS  Google Scholar 

  118. Taghipour M, Jalali M (2015) Effect of clay minerals and nanoparticles on chromium fractionation in soil contaminated with leather factory waste. J Hazard Mater 297:127–133

    Article  CAS  PubMed  Google Scholar 

  119. Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58:224–231

    Article  CAS  Google Scholar 

  120. Jośko I, Oleszczuk P, Pranagal J, Lehmann J, Xing B, Cornelissen G (2013) Effect of biochars, activated carbon and multiwalled carbon nanotubes on phytotoxicity of sediment contaminated by inorganic and organic pollutants. Ecol Eng 60:50–59

    Article  Google Scholar 

  121. Keller A, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692

    Article  Google Scholar 

  122. Anjum NA, Gill SS, Duarte AC, Pereira E, Ahmad I (2013) Silver nanoparticles in soil–plant systems. J Nanopart Res 15:1–26

    Google Scholar 

  123. Conway JR, Hanna SK, Lenihan HS, Keller AA (2014) Effects and implications of trophic transfer and accumulation of CeO2 nanoparticles in a marine mussel. Environ Sci Technol 48:1517–1524

    Article  CAS  PubMed  Google Scholar 

  124. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717

    Article  CAS  PubMed  Google Scholar 

  125. Schaumann GE, Philippe A, Bundschuh M, Metreveli G, Klitzke S, Rakcheev D, Grün A, Kumahor SK, Kühn M, Baumanng T, Lang F, Manz W, Schulz R, Vogel H-J (2015) Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: the quest for advanced analytics and interdisciplinary concepts. Sci Total Environ 535:3–19

    Article  CAS  PubMed  Google Scholar 

  126. Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325

    Article  CAS  PubMed  Google Scholar 

  127. Sabo-Attwood T, Unrine JM, Stone JW, Murphy CJ, Ghoshroy S, Blom D et al (2012) Uptake, distribution and toxicity of gold nano particles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6:353–360

    Article  CAS  PubMed  Google Scholar 

  128. Anjum NA, Adamb V, Kize R, Duarte AC, Pereira E, Iqbal M, Lukatkin AS, Ahmad I (2015) Nanoscale copper in the soil–plant system toxicity and under lying potential mechanisms. Environ Res 138:306–325

    Article  CAS  PubMed  Google Scholar 

  129. Ma X, Geisler-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061

    Article  CAS  PubMed  Google Scholar 

  130. Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46(17):9224–9239

    Article  CAS  PubMed  Google Scholar 

  131. Zhang P, Ma Y, Zhang Z (2015) Interactions between engineered nanomaterials and plants: phytotoxicity, uptake, translocation, and biotransformation. In: Siddiqui MH et al (ed) Nanotechnology and plants sciences. Springer, Basel. doi:10.1007/978-3-319-14502-0_5

  132. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  133. Lee W, An Y, Yoon H, Kweon H (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat ( Triticum aestivum ): plant uptake for water insoluble nanoparticles. Environ Toxicol Chem 27(9):1915–1921

    Google Scholar 

  134. Auffan M, Rose J, Wiesner MR, Bottero JY (2009) Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157:1127–1133

    Article  CAS  PubMed  Google Scholar 

  135. Judy JD, Bertsch PM (2014) Bioavailability, toxicity, and fate of manufactured nanomaterials in terrestrial ecosystems. Adv Agron 123:1–64

    Article  CAS  Google Scholar 

  136. Zhang W, Ebbs SD, Musante C, White JC, Gao C, Ma X (2015) Uptake and accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish ( Raphanus sativus L.). J Agric Food Chem 63:382–390

    Google Scholar 

  137. García A, Espinosa R, Delgado L, Casals E, González E, Puntes V, Carlos B, Font X, Sánchez A (2011) Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. Desalination 269:136–141

    Article  CAS  Google Scholar 

  138. Wu SG, Huang L, Head J, Chen DR, Kong IC, Tang YJ (2012) Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J Pet Environ Biotechnol 3:1–6

    Google Scholar 

  139. Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857

    Article  CAS  PubMed  Google Scholar 

  140. Wang Q, Ma X, Zhang W, Pei H, Chen Y (2012) The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 4:1105–1112

    Article  CAS  PubMed  Google Scholar 

  141. Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148

    Article  CAS  Google Scholar 

  142. Huang YC, Fan R, Grusak MA, Sherrier JD, Huang CP (2014) Effects of nano-ZnO on the agronomically relevant Rhizobium–legume symbiosis. Sci Total Environ 497–498:78–90

    Article  PubMed  CAS  Google Scholar 

  143. El-Temsah YS, Joner EJ (2010) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 24(1):42–49

    Google Scholar 

  144. Libralato G, Costa Devoti A, Zanella M, Sabbioni E, Mičetić I, Manodori L, Pigozzo A, Manenti S, Groppi F, Volpi Ghirardini A (2015) Phytotoxicity of ionic, micro and nano-sized iron in three plant species. Ecotoxicol Environ Saf 123:81–88. doi:10.1016/j.ecoenv.2015.07.024

    Article  PubMed  CAS  Google Scholar 

  145. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 15:122–132

    Article  CAS  Google Scholar 

  146. Grieger KD, Fjordbøge A, Hartmann NB, Eriksson E, Bjerg PL, Baun A (2010) Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J Contam Hydrol 118(3–4):165–183

    Article  CAS  PubMed  Google Scholar 

  147. Elsaesser C, Howard V (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64:129–137

    Article  CAS  PubMed  Google Scholar 

  148. Nowack B, Bucheli T (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22

    Article  CAS  PubMed  Google Scholar 

  149. Zhang D, Hua T, Xiao F, Chen C, Gersberg RM, Liu Y, Stuckey D, Ng WJ, Tan SK (2015) Phytotoxicity and bioaccumulation of ZnO nanoparticles in Schoenoplectus tabernaemontani. Chemosphere 120:211–219

    Article  CAS  PubMed  Google Scholar 

  150. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao A-J, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–387

    Article  CAS  PubMed  Google Scholar 

  151. Rondeau-Mouro C, Defer D, Leboeuf E, Lahaye M (2008) Assessment of cell wall porosity in Arabidopsis thaliana by NMR spectroscopy. Int J Biol Macromol 42:83–92

    Google Scholar 

  152. Dietz K-J, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16(11):582–589

    Article  CAS  PubMed  Google Scholar 

  153. Burello E, Worth AP (2011) QSAR modeling of nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:298–306

    Article  CAS  PubMed  Google Scholar 

  154. Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010

    Article  CAS  PubMed  Google Scholar 

  155. Pradeep T, Anshup (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517:6441–6478

    Google Scholar 

  156. Martínez-Fernández D, Barroso D, Komárek M (2015) Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure. Environ Sci Pollut Res Int 23(2):1732–1741. doi:10.1007/s11356-015-5423-5

  157. Trakal L, Martínez-Fernández D, Vítková M, Komárek M (2015) Phytoextraction of metals: modeling root metal uptake and associated processes. In: Ansari AA, Gill SS, Gill R, Lanza GR, Lee N (eds) Phytoremediation: management of environmental contaminants. Springer, New York ISBN: 978-3-319-10394-5

    Google Scholar 

  158. Gao J, Youn S, Hovsepyan A, Llaneza VL, Wang Y, Bitton G, Bonzongo JJ (2009) Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: effects of water chemical composition. Environ Sci Technol 43:3322–3328

    Article  CAS  PubMed  Google Scholar 

  159. Whitley AR, Levard C, Oostveen E, Bertsch PM, Matocha CJ, Kammer FVD, Unrine JM (2013) Behavior of Ag nanoparticles in soil: effects of particle surface coating, aging and sewage sludge amendment. Environ Pollut 182:141–149

    Article  CAS  PubMed  Google Scholar 

  160. Wang H, Kou X, Pei Z, Xiao JQ, Shan X, Xing B (2011) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5:30–42

    Article  PubMed  CAS  Google Scholar 

  161. Ma X, Gurung A, Deng Y (2013) Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Sci Total Environ 443:844–849

    Article  CAS  PubMed  Google Scholar 

  162. Zhou DJS, Li L, Wang Y, Weng N (2011) Quantifying the adsorption and uptake of CuO nanoparticles by wheat root based on chemical extractions. J Environ Sci 23:1852–1857

    Article  CAS  Google Scholar 

  163. Lü P, Cao J, He S, Liu J, Li H, Cheng G, Ding Y, Joyce DC (2010) Nano-silver pulse treatments improve water relations of cut rose cv. Movie Star flowers. Postharvest Biol Technol 57(3):196–202

    Article  CAS  Google Scholar 

  164. Majumdar S, Almeida IC, Arigi EA, Choi H, VerBerkmoes NC, Trujillo-Reyes J, Flores-Margez JP, White JC, Peralta-Videa JR, Gardea-Torresdey JL (2015) Environmental effects of nanoceria on seed production of common bean ( Phaseolus vulgaris ): a proteomic analysis. Environ Sci Technol 49(22):13283–13293. doi:10.1021/acs.est.5b03452

  165. Wang M, Chen L, Chen S, Ma Y (2012) Alleviation of cadmium-induced root growth inhibition in crop seedlings by nanoparticles. Ecotoxicol Environ Saf 79:48–54

    Article  CAS  PubMed  Google Scholar 

  166. Rico CM, Morales MI, Barrios AC, McCreary R, Hong J, Lee WY, Nunez J, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J Agric Food Chem 61:11278–11285

    Article  CAS  PubMed  Google Scholar 

  167. López-Moreno M, De la Rosa G, Hernández-Viezcas J, Peralta-Videa J, Gardea-Torresdey J (2010) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58:3689–3693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Zhao L, Peralta-Videa JR, Varela-Ramirez A, Castillo-Michel H, Li C, Zhang J, Aguilera RJ, Keller AA, Gardea-Torresdey JL (2012) Effect of surface coating and organic matter on the uptake of CeO2NPs by corn plants grown in soil: insight into the uptake mechanism. J Hazard Mater 225–226:131–138

    Article  PubMed  CAS  Google Scholar 

  169. Zhang Z, He X, Zhang H, Ma Y, Zhang P, Ding Y, Zhao Y (2011) Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 3:816–822

    Article  PubMed  CAS  Google Scholar 

  170. Pradhan S, Patra P, Mitra S, Dey KK, Jain S, Sarkar S, Roy S, Palit P, Goswami A (2014) Manganese nanoparticles: impact on non-nodulated plant as a potent enhancer in nitrogen metabolism and toxicity study both in vivo and in vitro. J Agric Food Chem 62(35):8777–8785

    Article  CAS  PubMed  Google Scholar 

  171. Hernandez-Viezcas JA, Castillo-Michel H, Servin AD, Peralta-Videa JR, Gardea-Torresdey JL (2011) Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles. Chem Eng J 170:346–352

    Google Scholar 

  172. Corredor E, Testillano PS, Coronado M, González-Melendi P, Fernández-Pacheco R, Marquina C, Ibarra MR, de la Fuente JM, Rubiales D, Pérez-de-Luque A, Risueño MC (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9(1):45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank AM, Brisset F, Carriere M (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat ( Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208

    Google Scholar 

  174. López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Castillo-Michel H, Bote CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean ( Glycine max ) plants. Environ Sci Technol 44:7315–7320

    Google Scholar 

  175. Ma Y, Zhang P, Zhang Z, He X, Li Y, Zhang J, Zheng L, Chu S, Yang K, Zhao Y, Chai Z (2014) Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber. Nanotoxicology 9:262–270

    Article  PubMed  CAS  Google Scholar 

  176. Birbaium K, Brogioli R, Schellenberg M, Stark W, Gunther D, Limbach L (2010) No evidence for cerium dioxide nanoparticle translocation in maize plants. Environ Sci Technol 44(22):8718–8723

    Article  CAS  Google Scholar 

  177. Schwabe F, Schulin R, Limbach LK, Stark W, Bürge D, Nowack B (2013) Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere 91:512–520

    Article  CAS  PubMed  Google Scholar 

  178. Zhao L, Peng B, Hernandez-Viezcas JA, Rico C, Sun Y, Peralta-Videa JR et al (2012) Stress response and tolerance of Zea mays to CeO2 nanoparticles: crosstalk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano 6:9615–9622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    Article  CAS  PubMed  Google Scholar 

  180. Wang ZXX, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem and phloem based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441

    Article  CAS  PubMed  Google Scholar 

  181. Gardea-Torresdey JL, Rico CM, White JC (2014) Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48:2526–2540

    Article  CAS  PubMed  Google Scholar 

  182. Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils—to mobilize or to immobilize? J Hazard Mater 266:141–166

    Article  CAS  PubMed  Google Scholar 

  183. Canas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and nonfunctionalized single-walled carbon-nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931

    Article  CAS  PubMed  Google Scholar 

  184. Carvajal M, Cooke DT, Clarkson DT (1996) Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function. Planta 199(3):372–381

    Article  CAS  Google Scholar 

  185. Martínez-Fernández D, Walker DJ, Romero-Espinar P, Flores P, del Río JA (2011) Physiological responses of Bituminaria bituminosa to heavy metals. J Plant Physiol 168:2206–2211

    Article  PubMed  CAS  Google Scholar 

  186. Trujillo-Reyes J, Vilchis-Nestor AR, Majumdar S, Peralta-Videa JR, Gardea-Torresdey JL (2013) Citric acid modifies surface properties of commercial CeO2 nanoparticles reducing their toxicity and cerium uptake in radish ( Raphanus sativus ) seedlings. J Hazard Mater 263:677–684

    Google Scholar 

  187. Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584

    Article  CAS  PubMed  Google Scholar 

  188. Landa P, Vankova R, Andrlova J, Hodek J, Marsika P, Storchova H, White JC, Vanek T (2012) Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mater 241–242:55–62

    Google Scholar 

  189. Martínez-Ballesta MC, Carvajal M (2014) New challenges in plant aquaporin biotechnology. Plant Sci 217–218:71–77

    Article  CAS  Google Scholar 

  190. Trujillo-Reyes J, Majumdar S, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2014) Exposure studies of core–shell Fe/Fe3O4 and Cu/CuO NPs to lettuce ( Lactuca sativa ) plants: are they a potential physiological and nutritional hazard? J Hazard Mater 267:255–263

    Google Scholar 

  191. Musante C, White JC (2012) Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol 27:510–517

    Google Scholar 

  192. Nair PG, Chung I (2014) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification, and molecular level changes. Environ Sci Pollut Res 21:12709–12722

    Google Scholar 

  193. Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93(6):906–915

    Article  CAS  PubMed  Google Scholar 

  194. Prakash M, Nair G, Kim SH, Chung IM (2014) Copper oxide nanoparticle toxicity in mung bean ( Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants. Acta Physiol Plant 36:2947–2958

    Google Scholar 

  195. Dimkpa C, McLean J, Britt D, Anderson A (2015) Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nano-particles in metal nutrition of plants. Ecotoxicology 24:119–129

    Article  CAS  PubMed  Google Scholar 

  196. Hong J, Rico CM, Zhao L, Adeleye AS, Keller AA, Peralta-Videa JR, Gardea-Torresdey JL (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce ( Lactuca sativa ) and alfalfa (Medicago sativa). Evnviron Sci Process Impacts 17:177–185

    Google Scholar 

  197. Bittner F (2014) Molybdenum metabolism in plants and crosstalk to iron. Front Plant Sci 5:28

    Article  PubMed  PubMed Central  Google Scholar 

  198. Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX (2002) Research on the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21:68–172

    Google Scholar 

  199. Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJJ (2010) Developmentalphytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana . Environ Toxicol Chem 29:669–675

    Google Scholar 

  200. Gao F, Hong F, Liu C, Zheng L, Su M, Wu X, Yang F, Wu C, Yang P (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biol Trace Elem Res 111:239–253

    Article  CAS  PubMed  Google Scholar 

  201. Yang F, Lui C, Gao F, Su M, Wu X, Zheng L, Hong F, Yang P (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119:77–88

    Article  CAS  PubMed  Google Scholar 

  202. Linglan M, Chao L, Chunxiang Q, Sitao Y, Jie L, Fengqing G, Fashui H (2008) Rubisco activase mRNA expression in spinach: modulation by nanoanatase treatment. Biol Trace Elem Res 122:168–178

    Article  PubMed  CAS  Google Scholar 

  203. Cai X, Gao Y, Sun Q, Chen Z, Megharaj M, Naidu R (2014) Removal of co-contaminants Cu (II) and nitrate from aqueous solution using kaolin-Fe/Ni nanoparticles. Chem Eng J 244:19–26

    Article  CAS  Google Scholar 

  204. Li H, Zhou Q, Wu Y, Wang T, Jiang G (2009) Effects of waterborne nanoiron on medaka (Oryzias latipes): antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicol Environ Saf 72:684–692

    Article  CAS  PubMed  Google Scholar 

  205. Kim JH, Oh Y, Yoon H, Hwang I, Chang YS (2015) Iron nanoparticle-induced activation of plasma membrane H+-ATPase promotes stomatal opening in Arabidopsis thaliana . Environ Sci Technol 4:1113–1119

    Google Scholar 

  206. Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Akbar S, Palit P, Goswami A (2013) Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata : a detailed molecular, biochemical, and biophysical study. Environ Sci Technol 47(22):13122–13131

    Google Scholar 

  207. Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M et al (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environ Exp Bot 102:37–47

    Google Scholar 

  208. Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stress plants a little easier. Funct Plant Biol 32:481–494

    Article  CAS  Google Scholar 

  209. Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Process Biochem 47:651–658

    Article  CAS  Google Scholar 

  210. Terry N (1983) Limiting factors in photosynthesis. IV. Iron stress mediated changes in light-harvesting and electron transport capacity and its effects on photosynthesis in vivo. Plant Physiol 71:855–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Marusenko Y, Shipp J, Hamilton GA, Morgan JLL, Keebaugh M, Hill H, Dutta A, Zhuo X, Upadhyay N, Hutchings J, Herckes P, Anbar AD, Shock E, Hartnett HE (2013) Bioavailability of nanoparticulate hematite to Arabidopsis thaliana . Environ Pollut 174:150–156

    Google Scholar 

  212. Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP et al (2012) CuO and ananoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1125

    Article  CAS  Google Scholar 

  213. Nair P, Chung I (2014) A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean ( Glycine max L.) root development and lignification of root cells. Biol Trace Elem Res 162:342–352

    Google Scholar 

  214. Dehkourdi EH, Mosavi M (2013) Effect of anatase nanoparticles (TiO2) on parsley seed germination ( Petroselinum crispum ) in vitro. Biol Trace Elem Res 155:283–286

    Google Scholar 

  215. Sharma P, Bhatt D, Zaidi MGH, Pardha Saradhi P, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea . Appl Biochem Biotechnol 167:2225–2233

    Google Scholar 

  216. Remedios C, Rosario F, Bastos V (2012) Environmental nanoparticles interactions with plants: morphological, physiological, and genotoxic aspects. J Bot 2012:1–8

    Article  CAS  Google Scholar 

  217. Lee S, Chung H, Kim S, Lee I (2013) The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum. Water Air Soil Pollut 224:1–11

    Google Scholar 

  218. Wang H, Wu F, Meng F, White JC, Holden PA, Xing B (2013) Engineered nanoparticles may induce genotoxicity. Environ Sci Technol 47:13212–13214

    Article  CAS  PubMed  Google Scholar 

  219. Barnes CA, Elsaesser A, Arkusz J, Smok A, Palus J et al (2008) Reproducible comet assay of amorphous silica nanoparticles detects no genotoxicity. Nano Lett 8:3069–3074

    Article  CAS  PubMed  Google Scholar 

  220. Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M (2014) Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8(3):233–278

    Article  CAS  PubMed  Google Scholar 

  221. Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46:1819–1827

    Article  CAS  PubMed  Google Scholar 

  222. Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophies levels: plant and human lymphocytes. Chemosphere 81(10):1253–1262

    Article  CAS  PubMed  Google Scholar 

  223. Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa . J Hazard Mater 190:613–621

    Google Scholar 

  224. Burklew E, Ashlock J, Winfrey WB, Zhang B (2012) Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS One 7(5):1–10

    Article  CAS  Google Scholar 

  225. Shi J, Abid AD, Kennedy IM, Hristova KR, Silk WK (2011) To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environ Pollut 159:1277–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Moon Y-S, Park E-S, Kim T-O, Lee H-S, Lee S-E (2014) SELDI-TOF MS-based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles. Environ Toxicol Phar 38(3):922–931

    Google Scholar 

  227. Bandyopadhyay S, Plascencia-Villa G, Mukherjee A, Rico CM, José-Yacamán M, Peralta-Videa JR, Gardea-Torresdey JL (2015) Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci Total Environ 515–516:60–69

    Article  PubMed  CAS  Google Scholar 

  228. Song L, Vijver MG, Peijnenburg WJGM (2015) Comparative toxicity of copper nanoparticles across three Lemnaceae species. Sci Total Environ 518–519:217–224

    Article  PubMed  CAS  Google Scholar 

  229. Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927

    Article  CAS  Google Scholar 

  230. Rao S, Shekhawat GS (2014) Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, metabolism and tissue specific accumulation in Brassica juncea . J Environ Chem Eng 2:105–114

    Google Scholar 

  231. Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, Zhao Y, Chai Z (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78:273–279

    Article  CAS  PubMed  Google Scholar 

  232. Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP (2013) Physiological and molecular response of Arabidopsis thaliana to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1:768–778

    Google Scholar 

  233. Fan G, Cang L, Qin W, Zhou C, Gomes H, Zhou D (2013) Surfactants-enhanced electrokinetic transport of xanthan gum stabilized nano Pd/Fe for the remediation of PCBs contaminated soils. Sep Purif Technol 114:64–72

    Article  CAS  Google Scholar 

  234. Shahwan T, Üzüm Ç, Eroğlu AE, Lieberwirth I (2010) Synthesis and characterization of bentonite/iron nanoparticles and their application as adsorbent of cobalt ions. Appl Clay Sci 47:257–262

    Article  CAS  Google Scholar 

  235. Ben-Moshe T, Dror I, Berkowitz B (2010) Transport of metal oxide nanoparticles in saturated porous media. Chemosphere 81:387–393

    Article  CAS  PubMed  Google Scholar 

  236. Lim S-F, Zheng Y-M, Zou S-W, Chen JP (2009) Removal of copper by calcium alginate encapsulated magnetic sorbent. Chem Eng J 152:509–513

    Article  CAS  Google Scholar 

  237. Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nanotoday 1(2):44–48

    Article  Google Scholar 

  238. Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2007) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41:284–290

    Article  CAS  PubMed  Google Scholar 

  239. Della Vecchia E, Coisson M, Appino C, Vinai F, Sethi R (2009) Magnetic characterization and interaction modeling of zerovalent iron nanoparticles for the remediation of contaminated aquifers. J Nanosci Nanotechnol 9:3210–3218

    Article  CAS  Google Scholar 

  240. Nowack B (2008) Pollution prevention and treatment using nanotechnology. In: Krug H (ed) Nanotechnology: environmental aspects, vol 2. Wiley, Weinheim, pp 1–15

    Google Scholar 

  241. EU NanoSafety Cluster-Database WG (2015) http://www.nanosafetycluster.eu/working-groups/4-database-wg.html. Accessed 5 Nov 2015

  242. Mitrano DM, Motellier S, Clavaguera S, Nowack B (2015) Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environ Int 77:132–147

    Article  CAS  PubMed  Google Scholar 

  243. Glaser B, Haumaier L, Guggenberger G, Zech W (2001) The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37–41

    Article  CAS  PubMed  Google Scholar 

  244. Joseph S, Anawar HM, Storer P, Blackwell P, Chia C, Lin Y, Munroe P, Donne S, Horvat J, Wang J, Solaiman ZM (2015) Effects of enriched biochars containing magnetic iron nanoparticles on mycorrhizal colonisation, plant growth, nutrient uptake and soil quality improvement. Pedosphere 25(5):749–760

    Article  Google Scholar 

Download references

Acknowledgments

Domingo Martínez-Fernández is grateful for financial support from the postdoctoral grant (19835/PD/15) financed by the “Consejería de Educación y Universidades de la CARM”, through the “Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia”. Michael Komárek is thankful for the support from the Czech Science Foundation (project 15-07117S). The English revision by Dr. David J. Walker is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domingo Martínez-Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Martínez-Fernández, D., Vítková, M., Michálková, Z., Komárek, M. (2017). Engineered Nanomaterials for Phytoremediation of Metal/Metalloid-Contaminated Soils: Implications for Plant Physiology. In: Ansari, A., Gill, S., Gill, R., R. Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-52381-1_14

Download citation

Publish with us

Policies and ethics