Skip to main content

Floating Wetlands for the Improvement of Water Quality and Provision of Ecosystem Services in Urban Eutrophic Lakes

  • Chapter
  • First Online:
Phytoremediation

Abstract

The occurrence of eutrophic urban water bodies is widely spread globally especially in countries where sanitary infrastructure is deficient in medium and small cities. Floating Wetlands also known as Treatment Floating Wetlands or Floating Islands are a suitable option for the treatment or improvement of the water quality in urban water bodies since they show several advantages over other systems, especially that they can operate in situ and no additional surface of land is required. They have been applied for the treatment of various types of water/wastewater ranging from low nutrient to high nutrient content. Their efficiency at removal of nutrients and other type of pollutants depends on several factors being the most important ones the initial concentration of pollutants, the environmental conditions, and the characteristic of the utilized plants. Emphasis is given in the need of research at large-scale applications in situ and also in the study of the potential of FW for the provision of ecosystem services. There are very few studies oriented towards this latter issue, which is currently a very important one for understanding their benefits to the urban human communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Souza Beghelli FG, Frascareli D, Pompêo MLM et al (2016) Trophic state evolution over 15 years in a tropical reservoir with low nitrogen concentrations and cyanobacteria predominance. Water Air Soil Pollut 227:95

    Article  Google Scholar 

  2. Wang C, Wang Z, Wang P et al (2016) Multiple effects of environmental factors on algal growth and nutrient thresholds for harmful algal blooms: application of response surface methodology. Environ Model Assess 21:247–259

    Article  Google Scholar 

  3. Kerstens SM, Spiller M, Leusbrock I et al (2016) A new approach to nationwide sanitation planning for developing countries: case study of Indonesia. Sci Total Environ 550:676–689

    Article  CAS  PubMed  Google Scholar 

  4. Padilla-Rivera A, Morgan-Sagastume JM, Noyola A (2016) Addressing social aspects associated with wastewater treatment facilities. Environ Impact Assess Rev 57:101–113

    Article  Google Scholar 

  5. Liu X, Tang L, Yang L et al (2015) Genotoxicity evaluation of irrigative wastewater from Shijiazhuang city in China. PLoS One. doi:10.1371/journal.pone.0144729

    Article  Google Scholar 

  6. Yang W, Chang J, Xu B et al (2008) Ecosystem service value assessment for constructed wetlands: a case study in Hangzhou, China. Ecol Econ 68(1–2):116–125

    Article  Google Scholar 

  7. Sánchez AJ, Salcedo MA, Macossay-Cortez AA et al (2012) Calidad ambiental de la laguna urbana “La Pólvora” en la cuenca del Río Grijalva. Tecnol Cienc Agua III(3):143–152

    Google Scholar 

  8. Olguín EJ, González-Portela RE, Sánchez-Galván G et al (2010) Contaminación de ríos urbanos: El caso de la subcuenca del Río Sordo en Xalapa, Veracruz, México. Rev Latinoam Biotecnol Amb Algal 1(2):178–190. Available at: http://bit.ly/-relbaa-v1n2-2010

  9. Sepúlveda-Jauregui A, Hoyos-Santillan J, Gutierrez-Mendieta FJ et al (2013) The impact of anthropogenic pollution on limnological characteristics of a subtropical highland reservoir “Lago de Guadalupe”, Mexico. Knowl Manage Aquatic Ecosyst 410:04

    Article  Google Scholar 

  10. Olguín EJ, Sánchez-Galván G, González-Portela RE et al (2014) The use of floating wetlands with Cyperus papyrus and Pontederia sagittata for the treatment of a polluted urban lake. In: Rivas HA (ed) Memorias de la Segunda Conferencia Panamericana en Sistemas de Humedales para el Manejo, Tratamiento y Mejoramiento de la Calidad del Agua. IMTA, Morelia, pp 45–47. Available at: http://bit.ly/imta-pub-2014

  11. Wu QT, Gao T, Zeng S et al (2006) Plant-biofilm oxidation ditch for in situ treatment of polluted waters. Ecol Eng 28(2):124–130

    Article  Google Scholar 

  12. Basílico G, de Cabo L, Magdaleno A et al (2016) Poultry effluent bio-treatment with Spirodela intermedia and periphyton in mesocosms with water recirculation. Water Air Soil Pollut 227:190. doi:10.1007/s11270-016-2896-x

    Article  Google Scholar 

  13. Kumari M, Tripathi BD (2014) Effect of aeration and mixed culture of Eichhornia crassipes and Salvinia natans on removal of wastewater pollutants. Ecol Eng 62:48–53

    Article  Google Scholar 

  14. Akinbile CO, Yusoff MS (2012) Assessing water hyacinth (Eichhornia crassipes) and lettuce (Pistia stratiotes) effectiveness in aquaculture wastewater treatment. Int J Phytoremediation 14:201–211

    Article  CAS  PubMed  Google Scholar 

  15. Cakir R, Gidirislioglu A, Cebi U (2015) A study on the effects of different hydraulic loading rates (HLR) on pollutant removal efficiency of subsurface horizontal-flow constructed wetlands used for treatment of domestic wastewaters. J Environ Manage 164:121–128

    Article  CAS  PubMed  Google Scholar 

  16. Valipour A, Ahn YH (2016) Constructed wetlands as sustainable ecotechnologies in decentralization practices: a review. Environ Sci Pollut Res 23(1):180–197

    Article  CAS  Google Scholar 

  17. Olguín EJ, Sánchez-Galvan G, Gonzalez-Portela RE et al (2008) Constructed wetland mesocosms for the treatment of diluted sugarcane molasses stillage from ethanol production using Pontederia sagittata. Water Res 42(14):3659–3666

    Article  PubMed  Google Scholar 

  18. Wood JD, Gordon RJ, Madani A et al (2015) Performance of seasonally and continuously loaded constructed wetlands treating dairy farm wastewater. J Environ Qual 44(6):1965–1973

    Article  CAS  PubMed  Google Scholar 

  19. Zhang X, Inoue T, Kato K et al (2016) Performance of hybrid subsurface constructed wetland system for piggery wastewater treatment. Water Sci Technol 73(1):13–20

    Article  CAS  PubMed  Google Scholar 

  20. Borne KE, Tanner CC, Fassman-Beck EA (2013) Stormwater nitrogen removal performance of a floating treatment wetland. Water Sci Technol 68(7):1657–1664

    Article  CAS  PubMed  Google Scholar 

  21. Zhao F, Xi S, Yang X et al (2012) Purifying eutrophic river waters with integrated floating island systems. Ecol Eng 40:53–60

    Article  CAS  Google Scholar 

  22. Olguín EJ, Sánchez-Galván G., Melo FJ, Hernández VJ, González-Portela RE (2017) Long-term assessment at field scale of floating treatment wetlands for improvement of water quality and provision of ecosystem services in a eutrophic urban pond. Sci Total Environ. doi: http://dx.doi.org/10.1016/j.scitotenv.2017.01.072

  23. Winston RJ, Hunt WF, Kennedy SG et al (2013) Evaluation of floating treatment wetlands as retrofits to existing stormwater retention ponds. Ecol Eng 54:254–265

    Article  Google Scholar 

  24. Lu HL, Ku CR, Chang YH (2015) Water quality improvement with artificial floating islands. Ecol Eng 74:371–375

    Article  Google Scholar 

  25. Chang NB, Islam K, Marimon Z et al (2012) Assessing biological and chemical signatures related to nutrient removal by floating islands in stormwater mesocosms. Chemosphere 88:736–743

    Article  CAS  PubMed  Google Scholar 

  26. De Stefani G, Tocchetto D, Salvato M et al (2011) Performance of a floating treatment wetland for in-stream water amelioration in NE Italy. Hydrobiologia 674:157–167

    Article  Google Scholar 

  27. Bu F, Xu X (2013) Planted floating bed performance in treatment of eutrophic river water. Environ Monit Assess 185(11):9651–9662

    Article  CAS  PubMed  Google Scholar 

  28. Liu J, Wang F, Liu W et al (2016) Nutrient removal by up-scaling a hybrid floating treatment bed (HFTB) using plant and periphyton: from laboratory tank to polluted river. Bioresour Technol 207:142–149

    Article  CAS  PubMed  Google Scholar 

  29. Bao Z (2015) Investigation of microcystins removal from eutrophic water by ecological floating bed at different water flow rates. Desalin Water Treat 56:1964–1974

    Article  CAS  Google Scholar 

  30. Wang CY, Sample DJ, Day SD et al (2015) Floating treatment wetland nutrient removal through vegetation harvest and observations from a field study. Ecol Eng 78:15–26

    Article  Google Scholar 

  31. TEEB Foundations (2010) Integrating the ecological and economic dimensions in biodiversity and ecosystem service valuation. In: Kumar P (ed) The economics of ecosystems and biodiversity: ecological and economic foundations. Earthscan, London

    Google Scholar 

  32. Maltby E, Acreman MC (2011) Ecosystem services of wetlands: pathfinder for a new paradigm. Hydrol Sci J 56(8):1341–1359

    Article  Google Scholar 

  33. Li X, Yu X, Jiang L et al (2014) How important are the wetlands in the middle-lower Yangtze River region: an ecosystem service evaluation approach. Ecosyst Serv 10:54–60

    Article  Google Scholar 

  34. Blackwell MSA, Pilgrim ES (2011) Ecosystem services delivered by small-scale wetlands. Hydrol Sci J 56(8):1467–1484

    Article  Google Scholar 

  35. Semeraro T, Giannuzzi C, Beccarisi L et al (2015) A constructed treatment wetland as an opportunity to enhance biodiversity and ecosystem services. Ecol Eng 82:517–526

    Article  Google Scholar 

  36. Ghermandi A, Fichtman E (2015) Cultural ecosystem services of multifunctional constructed treatment wetlands and waste stabilization ponds: time to enter the mainstream? Ecol Eng 84:615–623

    Article  Google Scholar 

  37. Moore TLC, Hunt WF (2012) Ecosystem service provision by stormwater wetlands and ponds—a means for evaluation? Water Res 46:6811–6823

    Article  CAS  PubMed  Google Scholar 

  38. Dunne EJ, Coveney MF, Hoge VR et al (2015) Phosphorus removal performance of a large-scale constructed treatment wetland receiving eutrophic lake water. Ecol Eng 79:132–142

    Article  Google Scholar 

  39. Jiang X, Song X, Chen Y et al (2014) Research on biogas production potential of aquatic plants. Renew Energy 69:97–102

    Article  CAS  Google Scholar 

  40. Chua LHC, Tan SBK, Sim CH et al (2012) Treatment of baseflow from an urban catchment by a floating wetland system. Ecol Eng 49:170–180

    Article  Google Scholar 

  41. Vázquez-Burney R, Bays J, Messer R et al (2015) Floating wetland islands as a method of nitrogen mass reduction: results of a 1 year test. Water Sci Technol 72(5):704–710

    Article  PubMed  Google Scholar 

  42. Pavan F, Breschigliaro S, Borin M (2015) Screening of 18 species for a. Environ Sci Pollut Res 22:2455–2466

    Article  CAS  Google Scholar 

  43. Zhang Q, Achal V, Xu Y et al (2014) Aquaculture wastewater quality improvement by water spinach (Ipomoea aquatica Forsskal) floating bed and ecological benefit assessment in ecological agriculture district Qiuzhuo. Aquacult Eng 60:48–55

    Article  Google Scholar 

  44. Saeed T, Paul B, Afrin R et al (2016) Floating constructed wetland for the treatment of polluted river water: a pilot scale study on seasonal variation and shock load. Chem Eng J 287:62–73

    Article  CAS  Google Scholar 

  45. Billore SK, Prashant A, Sharma JK (2009) Treatment performance of artificial floating reed beds in an experimental mesocosm to improve the water quality of river Kshipra. Water Sci Technol 60(11):2851–2859

    Article  CAS  PubMed  Google Scholar 

  46. Ge ZG, Feng CM, Wang XP et al (2016) Seasonal applicability of three vegetation constructed floating treatment wetlands for nutrient removal and harvesting strategy in urban stormwater retention ponds. Int Biodeterior Biodegradation 112:80–87

    Google Scholar 

Download references

Acknowledgments

Authors acknowledge the technical assistance from Erik Gonzalez-Portela and Francisco Javier Melo. They also thank the financial support from the National Council of Science and Technology (CONACYT) through the Project 215148, entitled “Improvement of the water quality in polluted urban water bodies using Floating Wetlands .”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenia J. Olguín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Olguín, E.J., Sánchez-Galván, G. (2017). Floating Wetlands for the Improvement of Water Quality and Provision of Ecosystem Services in Urban Eutrophic Lakes. In: Ansari, A., Gill, S., Gill, R., R. Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-52381-1_10

Download citation

Publish with us

Policies and ethics