Skip to main content

Microbial Inoculants-Assisted Phytoremediation for Sustainable Soil Management

  • Chapter
  • First Online:
Phytoremediation

Abstract

Agricultural soil pollution refers to its accumulation of heavy metals and related compounds which could be from natural or anthropogenic sources. This threatens food quality, food security, and environmental health. The traditional physico-chemical technologies soil washing used for soil remediation render the land useless as a medium for plant growth, as they remove all biological activities. Others are labor-intensive and have high maintenance cost. Phytoremediation, sustainable and cheaper in situ remediation techniques was therefore considered. However, plants do not have the capability to degrade many soil pollutants especially the organic pollutant. It is therefore imperative to take advantage of the degrading ability of soil microorganisms. This chapter therefore focuses on phytoremediation techniques augmented by microbial inoculants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu Q, Leung JYS, Geng X, Chen S, Huang X, Li H, Huang Z, Zhu L, Chen J, Lu Y (2015) Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals. Sci Total Environ 506–507:217–225

    Article  PubMed  Google Scholar 

  2. Alori E, Fawole O (2012) Phytoremediation of soils contaminated with aluminium and manganese by two arbuscular mycorrhizal fungi. J Agric Sci 4:246–252. doi:10.5539/jas.v4n8p246

    Google Scholar 

  3. Khan S, Afzal M, Iqbal S, Khan QM (2013) Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90:1317–1332. doi:10.1016/j.chemosphere.2012.09.045

    Article  CAS  PubMed  Google Scholar 

  4. Alori ET (2015) Phytoremediation using microbial communities: II. In: Ansari AA et al (eds) Phytoremediation: management of environmental contaminants. Springer International, Switzerland, pp 183–190

    Google Scholar 

  5. Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC, LLC, Boca Raton, FL

    Google Scholar 

  6. Kroopnick PM (1994) Vapor abatement costs analysis methodology for calculating life cycle costs for hydrocarbon vapour extracted during soil venting. In: Wise DL, Trantolo DJ (eds) Remediation of hazardous waste. Marcel Dekker, New York, pp 779–790

    Google Scholar 

  7. Parker R. (1994) Environmental restoration technologies. EMIAA yearbook. pp 169–171

    Google Scholar 

  8. Danh LT, Truong P, Mammucari R, Tran T, Foster N (2009) Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. Int J Phytoremediat 11:664–691. doi:10.1080/15226510902787302

    Article  CAS  Google Scholar 

  9. Haque N, Peralta-Videa JR, Jones GL, Gill TE, Gardea-Torresdey JL (2008) Screening the phytoremediation potential of desert broom (Baccharis sarothroides Gray) growing on mine tailings in Arizona, USA. Environ Pollut 153:362–368. doi:10.1016/j.envpol.2007.08.024

    Article  CAS  PubMed  Google Scholar 

  10. Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534. doi:10.1146/annurev-arplant-042809-112156

    Article  PubMed  Google Scholar 

  11. Mokgalaka-Matlala NS, Regnier TC, Combrinck S, Weiersbye IM (2010) Selection of tree species as assets for mine phytoremediation using the genus Rhus (Anacardiaceae) as a model. In: Fourie AB, Tibbett M (eds) 5th International Conference on Mine Closure Australian Centre for Geomechanics, Perth, Western Australia, pp 343–350

    Google Scholar 

  12. Adesodun JK, Atayese MO, Agbaje TA, Osadiaye BA, Mafe OF, Soretire AA (2010) Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates. Water Air Soil Pollut 207:195–201. doi:10.1007/s 11270-009-0128-3

    Article  CAS  Google Scholar 

  13. Bell TH, Joly S, Pitre FE, Yergeau E (2014) Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends Biotechnol 32:271–280. doi:10.1016/j.tibtech.2014.02.008

    Article  CAS  PubMed  Google Scholar 

  14. Lebeau T (2011) Bioaugmentation for in situ soil remediation: how to ensure the success of such a process. In: Singh A et al (eds) Bioaugmentation, biostimulation and biocontrol. Springer, Berlin, pp 129–186

    Chapter  Google Scholar 

  15. Rahman KS, Rahman T, Lakshmanaperumalsamy P, Banat IM (2002) Occurrence of crude oil degrading bacteria in gasoline and diesel station soils. J Basic Microbiol 42:284–291

    Article  CAS  PubMed  Google Scholar 

  16. Pérez-Montãno F, Alías-Villegas C, Bellogín RA, del Cerro P, Espuny MR, Jiménez-Guerrero I, López-Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agriculturalimportant plants: from microorganism capacities to crop production. Microbiol Res 169:325–336

    Article  PubMed  Google Scholar 

  17. Pietrzak U, Uren N (2011) Remedial options for copper-contaminated vineyard soils. Soil Res 49:44–55

    Article  CAS  Google Scholar 

  18. Seiler C, Berendonk TU (2012) Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front Microbiol 3:399

    Article  PubMed  PubMed Central  Google Scholar 

  19. Albanese S, De Vivo B, Lima A, Cicchella D, Civitillo D, Cosenza A (2010) Geochemical baselines and risk assessment of the Bagnoli brownfield site coastal sea sedimentsm (Naples, Italy). J Geochem Explor 105:19–33. doi:10.1016/j.gexplo.2010.01.007

    Article  CAS  Google Scholar 

  20. Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils—to mobilize or to immobilize? J Hazard Mater 266:141–166. doi:10.1016/j.jhazmat.2013.12.018

    Article  CAS  PubMed  Google Scholar 

  21. Kierczak J, Potysz A, Pietranik A, Tyszka R, Modelska M, Neel C, Ettler V, Mihaljevi CM (2013) Environmental impact of the historical Cu smelting in the Rudawy Janowickie mountains (south-western Poland). J Geochem Explor 124:183–194. doi:10.1016/j.gexplo.2012.09.008

    Article  CAS  Google Scholar 

  22. Krgović R, Trifković J, Milojković-Opsenica D, Manojlović D, Marković M, Mutić J (2015) Phytoextraction of metals by Erigeron canadensis L. from fly ash landfill of power plant “Kolubara”. In: Maestri E (ed) Environmental science and pollution research. Springer, Berlin

    Google Scholar 

  23. Guittonny-Philippe A, Masotti V, Claeys-Bruno M, Malleret L, Coulomb B, Prudent P, Höhener P, Petit M-É, Sergent M, Laffont-Schwob I (2015) Impact of organic pollutants on metal and As uptake by helophyte species and consequences for constructed wetlands design and management. Water Res 68:328–341. doi:10.1016/j.watres.2014.10.014

    Article  CAS  PubMed  Google Scholar 

  24. Ettler V (2015) Soil contamination near non-ferrous metal smelters: a review. Appl Geochem 64:56–74. doi:10.1016/j.apgeochem.2015.09.020

    Article  Google Scholar 

  25. Harguinteguy CA, Pignata ML, Fernández-Cirelli A (2015) Nickel, lead and zinc accumulation and performance in relation to their use in phytoremediation of macrophytes Myriophyllum aquaticum and Egeria densa. Ecol Eng 82:512–516. doi:10.1016/j.ecoleng.2015.05.039

    Article  Google Scholar 

  26. Lin X, Li P, Li F, Zhang L, Zhou Q (2008) Evaluation of plant microorganism synergy for the remediation of diesel fuel. Contam Soil Bull Environ Contam Toxicol 81:19–24

    Article  CAS  PubMed  Google Scholar 

  27. Robinson B, Fernández JE, Madejón P, Marañón T, Murillo JM, Green S, Clothier B (2003) Phytoextraction: an assessment of biogeochemical and economic viability. Plant Soil 249:117–125

    Article  CAS  Google Scholar 

  28. Guittonny-Philippe A, Masotti V, Höhener P, Boudenne JL, Viglione J, Laffont-Schwob I (2014) Constructed wetlands to reduce metal pollution from industrial catchments in aquatic Mediterranean ecosystems: a review to overcome obstacles and suggest potential solutions. Environ Int 64:1–16. doi:10.1016/j.envint.2013.11.016

    Article  PubMed  Google Scholar 

  29. Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570. doi:10.1007/s10529-010-0347-0

    Article  CAS  PubMed  Google Scholar 

  30. Liu J, Liu S, Sun K, Sheng YH, Gu YJ, Gao YZ (2014) Colonization on root surface by a phenanthrene-degrading endophytic bacterium and its application for reducing plant phenanthrene contamination. PLoS One 9:e108249

    Article  PubMed  PubMed Central  Google Scholar 

  31. Afzal M, Yousaf S, Reichenauer TG, Kuffner M, Sessitsch A (2011) Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. J Hazard Mater 186:1568–1575. doi:10.1016/j.jhazmat.2010.12.040

    Article  CAS  PubMed  Google Scholar 

  32. Sun K, Liu J, Gao Y, Sheng Y, Kang F, Waigi MG (2015) Inoculating plants with the endophytic bacterium Pseudomonas sp. Ph6-gfp to reduce phenanthrene contamination. Environ Sci Pollut Res 22(24):19529–19537. doi:10.1007/s11356-015-5128-9

    Article  CAS  Google Scholar 

  33. Zhu X, Ni X, Liu J, Gao YZ (2014) Application of endophytic bacteria to reduce persistent organic pollutants contamination in plants. CLEAN. Soil Air Water 42:306–310

    Article  CAS  Google Scholar 

  34. Afzal M, Khan S, Iqbal S, Mirza MS, Khan QM (2013) Inoculation method affects colonization and activity of Burkholderia phytofirmans PsJN during phytoremediation of dieselcontaminated soil. Int J Biodeter Biodegrad 85:331–336. doi:10.1016/j.ibiod.2013.08.022

    Article  CAS  Google Scholar 

  35. Agnello AC, Bagard M, van Hullebusch ED, Esposito G, Huguenot D (2016) Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci Total Environ 563–564:693–703. doi:10.1016/j.scitotenv.2015.10.061

    Article  PubMed  Google Scholar 

  36. Li YY, Yang H (2013) Bioaccumulation and degradation of pentachloronitrobenzene in Medicago sativa. J Environ Manage 119:143–150

    Article  CAS  PubMed  Google Scholar 

  37. Visca P, Imperi F, Lamont IL (2007) Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15:22–30

    Article  CAS  PubMed  Google Scholar 

  38. Zhang X, Xu D, Zhu C, Lundaa T, Scherr KE (2012) Isolation and identification of biosurfactant producing and crude oil degrading Pseudomonas aeruginosa strains. Chem Eng J 209:138–146

    Article  CAS  Google Scholar 

  39. Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40. doi:10.1016/j.envexpbot.2015.05.001

    Article  CAS  Google Scholar 

  40. Khalid A, Tahir S, Arshad M, Zahir ZA (2004) ` non-rhizosphere soils. Aust J Soil Res 42:921–926

    Article  CAS  Google Scholar 

  41. Denton B (2007) Advances in phytoremediation of heavy metals using plant growth promoting bacteria and fungi. MMG 445. Basic Biotechnol 3:1–5

    Google Scholar 

  42. Argueso CT, Hansen M, Kieber J (2007) Regulation of ethylene biosynthesis. J Plant Growth Regul 26:92–105. doi:10.1007/s00344-007-0013-5

    Article  CAS  Google Scholar 

  43. Stępniewska Z, Kuźniar A (2013) Endophytic microorganisms—promising applications in bioremediation of greenhouse gases. Appl Microbiol Biotechnol 97:9589–9596. doi:10.1007/s00253-013-5235-9

    Article  PubMed  PubMed Central  Google Scholar 

  44. Diels L, Lookman R (2007) Microbial systems for in-situ soil and groundwater remediation conference information. In: Marmiroli N, Samotokin B (eds) Advanced science and technology for biological decontamination of sites affected by chemical and radiological nuclear agents, earth and environmental sciences. Springer, Berlin, pp 61–77

    Google Scholar 

  45. Grundmann S, Fuß R, Schmid M, Laschinger M, Ruth B, Schulin R, Munch JC, Reiner SR (2007) Application of microbial hot spots enhances pesticide degradation in soils. Chemosphere 68:511–517. doi:10.1016/j.chemosphere.2006.12.065

    Article  CAS  PubMed  Google Scholar 

  46. Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120. doi:10.1016/j.jenvman.2012.04.002

    Article  CAS  PubMed  Google Scholar 

  47. Goux S, Shapir N, El Fantroussi S, Lelong S, Agathos SN, Pussemier L (2003) Long term maintenance of rapid atrazine degradation in soils inoculated with atrazine degraders. Water Air Soil Pollut Focus 3:131–142. doi:10.1023/A:1023998222016

    Article  CAS  Google Scholar 

  48. Chen YM, Lin TF, Huang C, Lin JC, Hsieh FM (2007) Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida. J Hazard Mater 148:660–670. doi:10.1016/j.jhazmat.2007.03.030

    Article  CAS  PubMed  Google Scholar 

  49. Seth CS (2012) A review on mechanisms of plant tolerance and role of transgenic plants in environmental clean-up. Bot Rev 78:32–62. doi:10.1007/s12229-011-9092-x

    Article  Google Scholar 

  50. Prapagdee B, Chanprasert M, Mongkolsuk S (2013) Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus. Chemosphere 92:659–666

    Article  CAS  PubMed  Google Scholar 

  51. Jing YX, Yan JL, He HD, Yang DJ, Xiao L, Zhong T, Yuan M, Cai XD, Li SB (2014) Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd Pb Zn uptake by Brassica napus. Int J Phytoremediat 16:321–333. doi:10.1080/15226514.2013.773283

    Article  CAS  Google Scholar 

  52. Hadi F, Bano A (2010) Effect of diazotrophs (Rhizobium and Azobactor) on growth of maize (Zea mays L.) and accumulation of lead (Pb) in different plant parts. Pak J Bot 42:4363–4370

    Google Scholar 

  53. Fu Q, Liu C, Ding N, Lin Y, Guo B (2010) Ameliorative effects of inoculation with the plant growth-promoting rhizobacterium Pseudomonas sp. DW1 on growth of eggplant (Solanum melongena L.) seedlings under salt stress. Agric Water Manage 97:1994–2000. doi:10.1016/j.agwat.2010.02.003

    Article  Google Scholar 

  54. Chen L, Luo S, Li X, Wan Y, Chen J, Liu C (2014) Interaction of Cd hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 68:300–308. doi:10.1016/j.soilbio.2013.10.021

    Article  CAS  Google Scholar 

  55. Zhang Y, He L, Chen Z, Wang Q, Qian M, Sheng X (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83:57–62

    Article  CAS  PubMed  Google Scholar 

  56. Tiwari S, Singh SN, Garg SK (2012) Stimulated phytoextraction of metals from flyash by microbial interventions. Environ Technol 33:2405–2413

    Article  CAS  PubMed  Google Scholar 

  57. Sun K, Liu J, Jin L, Gao YZ (2014) Utilizing pyrene-degrading endophytic bacteria to reduce the risk of plant pyrene contamination. Plant Soil 374:251–262

    Article  CAS  Google Scholar 

  58. Ma Y, Rajkumar M, Luo Y, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants—effects on plant growth and Ni uptake. J Hazard Mater 195:230–237

    Article  CAS  PubMed  Google Scholar 

  59. Becerra-Castro C, Kidd PS, Rodríguez-Garrido B, Monterroso C, Santos-Ucha P, Prieto-Fernández A (2013) Phytoremediation of hexachlorocyclohexane (HCH)-contaminated soils using Cytisus striatus and bacterial inoculants in soils with distinct organic matter content. Environ Pollut 178:202–210. doi:10.1016/j.envpol.2013.03.027

    Article  CAS  PubMed  Google Scholar 

  60. Driai S, Verdin A, Laruelle F, Beddiar A, Lounès-Hadj SA (2015) Is the arbuscular mycorrhizal fungus Rhizophagus irregularis able to fulfil its life cycle in the presence of diesel pollution? Int Biodeter Biodegrad 105:58–65. doi:10.1016/j.ibiod.2015.08.012

    Article  CAS  Google Scholar 

  61. Liang X, He CQ, Ni G, Tang GE, Chen XP, Lei YR (2014) Growth and Cd accumulation of Orychophragmus violaceus as afected by inoculation of Cd tolerant bacterial strains. Pedosphere 24:322–329

    Article  CAS  Google Scholar 

  62. Becerra-Castro C, Prieto-Fernández A, Kidd PS, Weyens N, Rodríguez-Garrido B, Touceda-González M, Acea MJ, Vangronsveld J (2013) Improving performance of Cytisus striatus on substrates contaminated with hexachlorocyclohexane (HCH) isomers using bacterial inoculants: developing a phytoremediation strategy. Plant Soil 362:247–260. doi:10.1016/j.envpol.2013.03.027

    Article  CAS  Google Scholar 

  63. Ho Y-N, Mathew DC, Hsiao S-C, Shih C-H, Chien M-F, Chiang H-M, Huang C-C (2012) Selection and application of endophytic bacterium Achromobacter xylosoxidans strain F3B for improving phytoremediation of phenolic pollutants. J Hazard Mater 219–220:43–49. doi:10.1016/j.jhazmat.2012.03.035

    Article  PubMed  Google Scholar 

  64. Khan AL, Waqas M, Hussain J, Al-Harrasi A, Hamayun M, Lee I-J (2015) Phytohormones enabled endophytic fungal symbiosis improve aluminum phytoextraction in tolerant Solanum lycopersicum: an examples of Penicillium janthinellum LK5 and comparison with exogenous GA3. J Hazard Mater 295:70–78. doi:10.1016/j.jhazmat.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  65. He H, Ye Z, Yang D, Yan J, Xiao L, Zhong T, Yuan M, Cai X, Fang Z, Jing Y (2013) Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd Pb, Zn uptake by Brassica napus. Chemosphere 90:1960–1965. doi:10.1016/j.chemosphere.2012.10.057

    Article  CAS  PubMed  Google Scholar 

  66. Yong X, Chen Y, Liu W, Xu L, Zhou J, Wang S, Chen P, Ouyang P, Zheng T (2014) Enhanced cadmium resistance and accumulation in Pseudomonas putida KT2440 expressing the phytochelatin synthase gene of Schizosaccharomyces pombe. Lett Appl Microbiol 58:255–261

    Article  CAS  PubMed  Google Scholar 

  67. Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  CAS  PubMed  Google Scholar 

  68. Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H (2015) The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manage 156:62–69. doi:10.1016/j.jenvman.2015.03.024

    Article  CAS  PubMed  Google Scholar 

  69. Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape Brassica napus roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170

    Article  CAS  PubMed  Google Scholar 

  70. Azcón R, Medina A, Roldán A, Biró B, Vivas A (2009) Significance of treated agrowaste residue and autochthonous inoculates (Arbuscular mycorrhizal fungi and Bacillus cereus) on bacterial community structure and phytoextraction to remediate soils contaminated with heavy metals. Chemosphere 75:327–334. doi:10.1016/j.chemosphere.2008.12.029

    Article  PubMed  Google Scholar 

  71. Wężowicz K, Turnau K, Anielska T, Zhebrak I, Gołuszka K, Błaszkowski J, Rozpądek P (2015) Metal toxicity differently affects the Iris pseudacorus-arbuscular mycorrhiza fungi symbiosis in terrestrial and semi-aquatic habitats. Environ Sci Pollut Res. doi:10.1007/s11356-015-5706-x

    Google Scholar 

  72. Adediran GA, Ngwenya BT, Mosselmans JFW, Heal KV, Harvie BA (2015) Mechanism behind bacteria induced plant grwoth promotion and Zn accumulation in Brassica juncea. J Hazard Mater 283:490–499. doi:10.1016/j.jhazmat.2014.09.064

    Article  CAS  PubMed  Google Scholar 

  73. Yuan M, He H, Xiao L, Zhong T, Liu H, Li S, Deng P, Ye Z, Jing Y (2013) Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27. Chemosphere 103:99–104

    Article  PubMed  Google Scholar 

  74. Srivastava S, Verma PC, Chaudhary V, Singh N, Abhilash PC, Kumar KV, Sharma N, Singh N (2013) Inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea (L.) Czern. Var. R-46. J Hazard Mater 262:1039–1047

    Article  CAS  PubMed  Google Scholar 

  75. He CQ, Tan GE, Liang X, Du W, Chen YL, Zhi GY, Zhu Y (2010) Effect of Zn tolerant bacterial strains on growth and Zn accumulation in Orychophragmus violaceus. Appl Soil Ecol 44:1–5. doi:10.1016/j.apsoil.2009.07.003

    Article  Google Scholar 

  76. Weyens N, Croes S, Dupae J, Newman L, van der Lelie D, Carleer R, Vangronsveld J (2010) Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ Pollut 158:2422–2427. doi:10.1016/j.envpol.2010.04.004

    Article  CAS  PubMed  Google Scholar 

  77. Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250:477–483. doi:10.1016/j.jhazmat.2013.02.014

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Temitope Alori B.Agric., M.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Alori, E.T., Fawole, O.B. (2017). Microbial Inoculants-Assisted Phytoremediation for Sustainable Soil Management. In: Ansari, A., Gill, S., Gill, R., R. Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-52381-1_1

Download citation

Publish with us

Policies and ethics