Skip to main content

Kernel Equating

  • Chapter
  • First Online:
Applying Test Equating Methods

Part of the book series: Methodology of Educational Measurement and Assessment ((MEMA))

  • 1181 Accesses

Abstract

This chapter describes the kernel equating framework. The five steps that characterize kernel equating are illustrated using the Math20EG, Math20SG, CBdata, and KB36 data sets that were introduced in Chap. 2 and which have been previously analyzed in the literature. We also illustrate the methods using the ADM admissions test data set. The R packages kequate (Andersson et al., J Stat Softw 55(6):1–25, 2013) and SNSequate (González, J Stat Softw 59(7), 1–30, 2014) are used throughout the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Further details about \(\boldsymbol{C}\) matrices are given in Appendix B.2.

  2. 2.

    Negative score values can arise for instance when in a multiple choice test, a fraction of the total score in the test is discounted for each wrong answer in the test.

  3. 3.

    Note that this is only true for the EG design. For other designs, the vector of score probabilities has to be further transformed using the design functions in order to obtain \(\hat{r}_{j}\) and \(\hat{s}_{k}\).

  4. 4.

    Although variances instead of standard deviations are plotted in the right panel of Fig. 4.5.

  5. 5.

    It might be possible to obtain estimated score probabilities from fitted frequencies for designs different than the EG, but additional steps might be necessary (i.e., the DF should be explicitly programmed and applied).

  6. 6.

    Estimated score probabilities are obtained by making a call to the loglin.smooth() function.

  7. 7.

    Values from lines 6 to 75 have been omitted in order to save space.

  8. 8.

    The quantity inside the norm sign in Eq. (4.15) is called an SEE vector.

  9. 9.

    Values from lines 6–75 have been omitted to save space.

References

  • Akaike, M. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.

    Article  Google Scholar 

  • Andersson, B., & von Davier, A. A. (2014). Improving the bandwidth selection in kernel equating. Journal of Educational Measurement, 51(3), 223–238.

    Google Scholar 

  • Andersson, B., Bränberg, K., & Wiberg, M. (2013). Performing the kernel method of test equating with the package kequate. Journal of Statistical Software, 55(6), 1–25.

    Article  Google Scholar 

  • Attali, D. (2016). ggExtra: Add marginal histograms to ‘ggplot2’, and more ‘ggplot2’ enhancements. R package version 0.3.4.

    Google Scholar 

  • Bishop, Y., Fienberg, S., & Holland, P. (1975). Discrete multivariate analysis: Theory and practice. Cambridge, MA: MIT Press.

    Google Scholar 

  • Cid, J. A., & von Davier, A. A. (2015). Examining potential boundary bias effects in kernel smoothing on equating: An introduction for the adaptive and Epanechnikov kernels. Applied Psychological Measurement, 39(3), 208–222.

    Google Scholar 

  • González, J. (2014). SNSequate: Standard and nonstandard statistical models and methods for test equating. Journal of Statistical Software, 59(7), 1–30.

    Article  Google Scholar 

  • González, J., & von Davier, A. A. (2017). An illustration of the Epanechnikov and adaptive continuization methods in kernel equating. In L. A. van der Ark, M. Wiberg, S. A. Culpeppe, J. A. Douglas, & W.-C. Wang (Eds.), Quantitative psychology – 81st annual meeting of the psychometric society, Asheville, North Carolina, 2016. New York: Springer.

    Google Scholar 

  • Häggström, J., & Wiberg, M. (2014). Optimal bandwidth selection in observed-score kernel equating. Journal of Educational Measurement, 51(2), 201–211.

    Article  Google Scholar 

  • Hall, P., Marron, J., & Park, B. U. (1992). Smoothed cross-validation. Probability Theory and Related Fields, 92(1), 1–20.

    Google Scholar 

  • Holland, P., & Thayer, D. (1989). The kernel method of equating score distributions (Technical report). Princeton, NJ: Educational Testing Service.

    Google Scholar 

  • Jiang, Y., von Davier, A. A., & Chen, H. (2012). Evaluating equating results: Percent relative error for chained kernel equating. Journal of Educational Measurement, 49(1), 39–58.

    Google Scholar 

  • Johnson, D. H., & Sinanovic, S. (2000). Symmetrizing the Kullback-Leibler distance (Technical report). IEEE Transactions on Information Theory.

    Google Scholar 

  • Kendall, M., & Stuart, A. (1997). The advanced theory of statistics (4th ed., Vol. 1). London: Griffin.

    Google Scholar 

  • Lee, Y., & von Davier, A. (2011). Equating through alternative kernels. In A. von Davier (Ed.), Statistical models for test equating, scaling, and linking (Vol. 1, pp. 159–173). New York: Springer.

    Google Scholar 

  • Lehmann, E. L. (1999). Elements of large-sample theory. New York: Springer.

    Google Scholar 

  • Liang, T., & von Davier, A. A. (2014). Cross-validation: An alternative bandwidth-selection method in kernel equating. Applied Psychological Measurement, 38(4), 281–295.

    Google Scholar 

  • Moses, T., & Holland, P. (2009). Selection strategies for univariate loglinear smoothing models and their effect on equating function accuracy. Journal of Educational Measurement, 46, 159–176.

    Article  Google Scholar 

  • Moses, T., & von Davier, A. (2005). Using PROC GENMOD for loglinear smoothing. Paper SA0605, 1–21.

    Google Scholar 

  • Rao, C. R. (1973). Linear statistical inference and applications. New York: Wiley.

    Google Scholar 

  • Silverman, B. (1986). Density estimation for statistics and data analysis (Vol. 3). London: Chapman and Hall.

    Book  Google Scholar 

  • von Davier, A. A. (2013). Observed-score equating: An overview. Psychometrika, 78(4), 605–623.

    Google Scholar 

  • von Davier, A. A., Holland, P., & Thayer, D. (2004). The kernel method of test equating. New York: Springer.

    Google Scholar 

  • Wiberg, M., & Bränberg, K. (2015). Kernel equating under the non-equivalent groups with covariates design. Applied Psychological Measurement, 39(5), 349–361.

    Article  Google Scholar 

  • Wiberg, M., & González, J. (2016). Statistical assessment of estimated transformations in observed-score equating. Journal of Educational Measurement, 53(1), 106–125.

    Article  Google Scholar 

  • Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. New York: Springer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

González, J., Wiberg, M. (2017). Kernel Equating. In: Applying Test Equating Methods. Methodology of Educational Measurement and Assessment. Springer, Cham. https://doi.org/10.1007/978-3-319-51824-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51824-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51822-0

  • Online ISBN: 978-3-319-51824-4

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics