Skip to main content

Experimental Analogue Implementation of Memristor Based Chaotic Oscillators

  • Chapter
  • First Online:
Advances in Memristors, Memristive Devices and Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 701))

Abstract

The theory of memristor was postulated in the year of 1971 by Leon O. Chua. The intensive interest on memristive systems is given by the researchers since after the physical realization of the hysteresis behavior in a nanoscale TiO\(_{\mathrm {2}}\) memristor in 2008 by a group of researchers at HP Labs lead by Stanley Williams. Research on memristive systems has been carried out on various capacities such as understanding the mathematics of memristor, finding new materials which have memristive properties, studying the underlying dynamics of memristive systems and revisiting the existing concepts with memristor as a nonlinear element. As a result, memristors have potential applications in various domains. It ranges from neural networks, memory devices, artificial intelligence, high speed computing, nano batteries and human skin modeling, etc. In the recent times, much attention is given to explore the nonlinear dynamics of memristor based circuits. In this chapter, we consider a smooth continuous cubic memristor as nonlinear element. It is applied to (a) an autonomous and (b) a non-autonomous dynamical systems namely, the Chua’s circuit and Duffing Oscillator, to study the associated dynamics of these systems. The numerical simulation of the circuit systems as well as its hardware experimental studies are performed in the laboratory. An inductor free realization and volume expanded period doubling scenario in a memristive Chua’s circuit is studied. The complex behaviors, like, bifurcations and chaos, three-tori, transient chaos and intermittency in a memristive Duffing oscillator are described. In addition, “0–1 test” for the experimental time series data characterizing the regular and chaotic dynamics of the proposed circuits are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banerjee, T. (2012). Single amplifier biquad based inductor-free Chua’s circuit. Nonlinear Dynamics, 68, 565–573.

    Article  MathSciNet  Google Scholar 

  • Bao, B.-C., Xu, J.-P., & Liu, Z. (2010). Initial state dependent dynamical behviours in a memristor based chaotic circuit. Chinese Physics Letters, 27(7), 070504.

    Article  Google Scholar 

  • Bao, B.-C., Fei, F., Wei, D., & Pan, S.-H. (2013). The voltage-current relationship and equivalent circuit implementation of parallel flux-controlled memristive circuits. Chinese Physics B, 22(6), 068401.

    Article  Google Scholar 

  • Bharathwaj, M., Blain, T., & Sundqvist, K. (2009). A synthetic inductor implementation of Chua’s circuit. EECS Department, University of California, Berkeley. UCB/EECS-2009-20.

    Google Scholar 

  • Bleher, S., Grebogi, C., & Ott, E. (1990). Bifurcation to chaotic scattering. Physica D: Nonlinear Phenomena, 46, 87–121.

    Article  MathSciNet  MATH  Google Scholar 

  • Botta, V. A., Nespoli, C., & Messias, M. (2011). Mathematical analysis of a third order memristor based Chua’s oscillator. TEMA Tendencias em Matematica Aplicada e Computacional, 12(2), 91–99.

    MathSciNet  MATH  Google Scholar 

  • Chua, L. O. (1971). Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18, 507–519.

    Google Scholar 

  • Corinto, F., & Ascoli, A. (2012). Memristive diode bridge with LCR filter. Electronics Letters, 48(14), 824–825.

    Article  Google Scholar 

  • Dhamala, M., & Lai, Y.-C. (1999). Controlling transient chaos in deterministic flows with applications to electrical power systems and ecology. Physical Review E, 59, 1646.

    Article  Google Scholar 

  • Fouda, M. E., & Radwan, M. G. (2014). Memristor-based voltage-controlled relaxation oscillators. International Journal of Circuit Theory and Applications, 42, 1092–1102.

    Article  Google Scholar 

  • George, D. (1918). Erzwungene schwingung bei vernderlicher eigenfrequenz und ihre technische bedeutung. Vieweg.

    Google Scholar 

  • Gopal, R., Venkatesan, A., & Lakshmanan, M. (2013). Applicability of 0–1 test for strange nonchaotic attractors. Chaos, 23, 023123.

    Article  MathSciNet  MATH  Google Scholar 

  • Gottwald, G. A., & Melbourne, I. (2004). A new test for chaos in deterministic systems. Proceedings of the Royal Society of London A, 460, 603–611.

    Article  MathSciNet  MATH  Google Scholar 

  • Ishaq Ahamed, I., & Lakshmanan, M. (2013). Nonsmooth bifurcations, transient hyperchaos and hyperchaotic beats in a memristive Murali-Lakshmanan-Chua’s circuit. International Journal of Bifurcation and Chaos, 23(6), 1350098.

    Google Scholar 

  • Ishaq Ahamed, I., Srinivasan, K., Murali, K., & Lakshmanan, M. (2011). Observation of chaotic beats in a driven memristive Chua’s circuit. International Journal of Bifurcation and Chaos, 21(3), 737–757.

    Google Scholar 

  • Itoh, M., & Chua, L. O. (2008). Memristor oscillators. International Journal of Bifurcation and Chaos, 18(11), 3183–3206.

    Article  MathSciNet  MATH  Google Scholar 

  • Jothimurugan, R., Suresh, K., Ezhilarasu, M., & Thamilmaran, K. (2014). Improved realization of canonical Chua’s circuit with synthetic inductor using current feedback operational amplifiers. AEU—International Journal of Electronics and Communications, 68(5), 413–421.

    Google Scholar 

  • Jung, C., Tél, T., & Ziemniak, E. (1993). Application of scattering chaos to particle transport in a hydrodynamical flow. Chaos: An Interdisciplinary Journal of Nonlinear Science, 3, 555–568.

    Article  Google Scholar 

  • Kim, H., Sah, M., Yang, C., Cho, S., & Chua, L. (2012). Memristor emulator for memristor circuit applications. IEEE Transactions on CAS, I(59), 2422–2431.

    MathSciNet  Google Scholar 

  • Kovacic, I., & Brennan, M. J. (2011). The Duffing equation: Nonlinear oscillators and their behaviour. Wiley.

    Google Scholar 

  • Kulp, C. W., & Smith, S. (2011). Characterization of noisy symbolic time series. Physical Review E, 83, 026201.

    Article  Google Scholar 

  • Kyriakides, E., & Georgiou, J. (2014). A compact, low-frequency, memristor-based oscillator. International Journal of Circuit Theory and Applications.

    Google Scholar 

  • Lai, Y.-C., & Tél, T. (2011). Transient chaos: Complex dynamics on finite time scales (Vol. 173). Springer Science & Business Media.

    Google Scholar 

  • Li, Y., Huang, X., & Guo, M. (2013). The generation, analysis, and circuit implementation of a new memristor based chaotic system. Mathematical Problems in Engineering, 398306.

    Google Scholar 

  • Li, H., Wang, L., & Duan, S. (2014). A memristor-based scroll chaotic system—design, analysis and circuit implementation. International Journal of Bifurcation and Chaos, 24, 1450099.

    Article  MATH  Google Scholar 

  • Manneville, P., & Pomeau, Y. (1979). Intermittency and the Lorenz model. Physics Letters A, 75, 1–2.

    Article  MathSciNet  MATH  Google Scholar 

  • Martinsen, O. G., Grimnes, S., Lütken, C. A., & Johnsen, G. K. (2010). Memristance in human skin. Journal of Physics: Conference Series, 224, 012071.

    Google Scholar 

  • Morgül, Ö. (1995). Inductorless realization of Chua’s oscillator. Electronics Letters, 31, 1424–1430.

    Google Scholar 

  • Muthuswamy, B. (2010). Implementing memristor based Chaotic circuits. International Journal of Bifurcation and Chaos, 20(5), 1335–1350.

    Article  MATH  Google Scholar 

  • Sabarathinam, S., & Thamilmaran, K. (2015). Transient chaos in a globally coupled system of nearly conservative Hamiltonian duffing oscillators. Chaos, Solitons & Fractals, 73, 129–140.

    Article  MathSciNet  MATH  Google Scholar 

  • Sánchez-Lópeza, C., Carrasco-Aguilara, M., & Muñiz-Montero, C. (2015). A 16 Hz-160 kHz memristor emulator circuit. International Journal of Electronics and Communications (AEU), 69, 1208–1219.

    Article  Google Scholar 

  • Secco, J., Biey, M., Corinto, F., Ascoli, A., & Tetzlaff, R. (2015). Complex behavior in memristor circuits based on static nonlinear two-ports and dynamic bipole. IEEE—European Conference on Circuit Theory and Design (ECCTD), 1–4.

    Google Scholar 

  • Slipko, V. A., Pershin, Y. V., & Di Ventra, M. (2013). Changing the state of a memristive system with white noise. Physical Review E, 87, 042103.

    Article  Google Scholar 

  • Strukov, D. B., Snider, G. S., Stewart, D. R., & Stanley Williams, R. (2008). The missing memristor found. Nature, 453, 80–83.

    Article  Google Scholar 

  • Tél, T., & Lai, Y.-C. (2008). Chaotic transients in spatially extended systems. Physics Reports, 460, 245–275.

    Article  MathSciNet  Google Scholar 

  • Teng, L., Iu, H. H. C., Wang, X., & Wang, X. (2014). Chaotic behavior in fractionalorder memristor-based simplest chaotic circuit using fourth degree polynomial. Nonlinear Dynamics, 77, 231–241.

    Google Scholar 

  • Thomas, A. (2013). Memristor-based neural networks. Journal of Physics D: Applied Physics, 46, 093001.

    Google Scholar 

  • Tôrres, L., & Aguirre, L. (2000). Inductorless Chua’s circuit. Electronics Letters, 36, 1915–1916.

    Article  Google Scholar 

  • Valov, I., Linn, E., Tappertzhofen, S., Schmelzer, S., van den Hurk, J., Lentz, F., et al. (2013). Nanobatteries in redox-based resistive switches require extension of memristor theory. Nature Communications, 4, 1771.

    Article  Google Scholar 

  • Valsa, J., Biolek, D., & Biolek, Z. (2011). An analogue model of the memristor. International Journal of Numerical Modelling, 24, 400–408.

    Google Scholar 

  • Yang, J. J., Pickett, M. D., Li, X., Ohlberg, D. A. A., Stewart, D. R., & Stanley Williams, R. (2008). Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotechnology, 3, 429–433.

    Article  Google Scholar 

  • Zakhidov, A. A., Jung, B., Slinker, J. D., Abruña, H. D., & Malliaras, G. G. (2010). A light-emitting memristor. Organic Electronics, 11, 150–153.

    Google Scholar 

  • Zidan, M. A., Omran, H., Smith, C., Syed, A., Radwan, A. G., & Salama, K. N. (2014). A family of memristorbased reactance-less oscillators. International Journal of Circuit Theory and Applications, 42, 1103–1122.

    Article  Google Scholar 

Download references

Acknowledgements

R.J and S.S knowledges the financial support of University Grants Commission, India through UGC (BSR)-RFSMS scheme. K.S is thankful to the financial support of the Department of Science and Technology (DST), India through PURSE scheme. K.T is grateful to DST, India for the financial support in form of major research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Thamilmaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jothimurugan, R., Sabarathinam, S., Suresh, K., Thamilmaran, K. (2017). Experimental Analogue Implementation of Memristor Based Chaotic Oscillators. In: Vaidyanathan, S., Volos, C. (eds) Advances in Memristors, Memristive Devices and Systems. Studies in Computational Intelligence, vol 701. Springer, Cham. https://doi.org/10.1007/978-3-319-51724-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51724-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51723-0

  • Online ISBN: 978-3-319-51724-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics