Skip to main content

Memristor Emulators: A Note on Modeling

  • Chapter
  • First Online:
Advances in Memristors, Memristive Devices and Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 701))

Abstract

In a recent publication (Yi et al. 2011) elucidating a possible scheme to write information reliably onto a memory crossbar, Hewlett Packard Labs researchers employed a thyristor-based circuit to emulate the off-to-on switching behaviour of a titanium oxide memristor. The use of a thyristor device allowed them to test inexpensively and reliably the functionalities of the closed-loop crossbar write circuitry by using conventional CMOS components. From a device modeling point of view, however, it is worthy to point out that the aforementioned emulator is not a genuine memristor. The aim of this paper is to demonstrate with an in-depth mathematical analysis that the model of the thyristor does not fall into the class of memristors. The modelling approach adopted in this work may be a source of inspiration for researchers willing to check whether other devices or circuits may be classified as memristors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Under quasi-static excitation, the voltage across the device is a single-valued function of the current through it.

  2. 2.

    The zener diode in each cell is equivalent to the parallel of two zener diodes, one employed within the circuit of the BS08D device, refer to Fig. 1, and one adopted to tune the voltage at which the emulator undergoes switching, as it may be evinced by inspection of Fig. 2.

  3. 3.

    Let us assume that the two terminals of a one-port made up of arbitrary linear and nonlinear circuit elements, as well as voltage and current sources, are closed onto a current-controlled memristor device. The waveform of the voltage v(t) associated with the current i(t) of any admissible signal pair (i(t), v(t)) measured from this circuit set-up must cross the time axis whenever \(i=0\). This property of a current-controlled memristor is known as coincident zero-crossing signature (Chua 2015).

References

  • Abdalla, H., & Pickett, M. (2011). Spice modeling of memristors. In IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1832–1835).

    Google Scholar 

  • Ascoli, A., & Corinto, F. (2013). Memristor models in a chaotic neural circuit. International Journal of Bifurcation and Chaos (IJBC), 23(1350052), 28.

    Google Scholar 

  • Ascoli, A., Corinto, F., Senger, V., & Tetzlaff, R. (2013). Memristor model comparison. IEEE Circuits and Systems Magazine, 13, 89–105.

    Article  Google Scholar 

  • Ascoli, A., Corinto, F., & Tetzlaff, R. (2015a). A class of versatile circuits, made up of standard electrical components, are memristors. International Journal of Circuit Theory and Applications (IJCTA), 44, 127–146.

    Article  Google Scholar 

  • Ascoli, A., Corinto, F., & Tetzlaff, R. (2015b). Generalized boundary condition memristor model. International Journal of Circuit Theory and Applications (IJCTA), 44, 60–84.

    Article  Google Scholar 

  • Ascoli, A., Schmidt, T., Corinto, F., & Tetzlaff, R. (2014). Application of the Volterra Series paradigm to memristive systems, Chap. 5 (pp. 163–191). New York: Springer.

    Google Scholar 

  • Ascoli, A., Slesazeck, S., Mähne, H., Tetzlaff, R., & Mikolaijck, T. (2015c). Nonlinear dynamics of a locally-active memristor. IEEE Transactions on Circuits and Systems–I (TCAS–I): Regular Papers, 62, 1165–1174.

    Google Scholar 

  • Ascoli, A., Tetzlaff, R., & Chua, L. (2016a). The first ever real bistable memristors-part i: Theoretical insights on local fading memory. IEEE Transactions on Circuits and Systems-II (TCAS-II): Express Briefs.

    Google Scholar 

  • Ascoli, A., Tetzlaff, R., & Chua, L. (2016b). The first ever real bistable memristors-part ii: Design and analysis of a local fading memory system. IEEE Transactions on Circuits and Systems-II (TCAS-II): Express Briefs.

    Google Scholar 

  • Ascoli, A., Tetzlaff, R., Chua, L., Strachan, J., & Williams, R. (2016c). History erase effect in a non-volatile memristor. IEEE Transactions on Circuits and Systems–I (TCAS–I): Regular Papers, 63, 389–400.

    Google Scholar 

  • Ben-Hur, R., & Kvatinsky, S. (2016). Memristive memory processing unit (mpu) controller for in-memory processing. In Proceedings of International Conference on the Science of Electrical Engineering (ICSEE).

    Google Scholar 

  • Carrara, S., Sacchetto, D., Doucey, M.-A., Baj-Rossi, C., Micheli, G. D., & Leblebici, Y. (2012). Memristive-biosensors: A new detection method by using nanofabricated memristors. Sensors and Actuators B: Chemical, 171–172, 449–457.

    Article  Google Scholar 

  • Chua, L. O. (1971). Memristor-The missing circuit element. IEEE Transactions on Circuit Theory, 18, 507–519.

    Article  Google Scholar 

  • Chua, L. (1980). Device modelling via basic nonlinear circuit elements. IEEE Transactions on Circuits and Systems–I: Regular Papers, CAS, 27, 1014–1044.

    Google Scholar 

  • Chua, L. (2011). Resistance switching memories are memristors. Applied Physics A, 102(4), 765–783.

    Article  MATH  Google Scholar 

  • Chua, L. (2014). If it’s pinched, it’s a memristor. Semiconductor Science and Technology, 29(104001), 42.

    Google Scholar 

  • Chua, L. (2015). Everything you wish to know about memristors but are afraid to ask. Radioengineering, 24, 319–368.

    Article  Google Scholar 

  • Chua, L., Desoer, C., & Kuh, E. (1985). Linear and nonlinear circuits. New York, USA: McGraw-Hill.

    MATH  Google Scholar 

  • Chua, L., & Sing, Y. W. (1979). Nonlinear lumped-circuit model for s.c.r. Electronic Circuits and Systems, 3, 5–14.

    Article  Google Scholar 

  • Chua, L. O., & Kang, S. M. (1976). Memristive devices and system. Proceedings of IEEE, 64, 209–223.

    Article  MathSciNet  Google Scholar 

  • Corinto, F., Ascoli, A., & Gilli, M. (2011). Nonlinear dynamics of memristive oscillators. IEEE Transactions on Circuits Systems I Regular Papers, 58, 1323–1336.

    Article  MathSciNet  Google Scholar 

  • Corinto, F., Ascoli, A., & Gilli, M. (2012). Analysis of current-voltage characteristics for memristive elements in pattern recognition systems. International Journal of Circuit Theory and Applications (IJCTA), 40, 1277–1320.

    Article  Google Scholar 

  • Corinto, F., Chua, L., & Civalleri, P. (2015). A theoretical approach to memristor devices. IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS), 5, 123–132.

    Article  Google Scholar 

  • Corinto, F., & Forti, M. (2016). Memristor circuits: Flux-charge analysis method. IEEE Transactions on Circuits and Systems–I (TCAS–I): Regular Papers, 1–13.

    Google Scholar 

  • Jo, S., Kim, K.-H., & Lu, W. (2009). High-density crossbar arrays based on a si memristive system. Nanoletters, 9, 870–874.

    Article  Google Scholar 

  • Kano, G., Iwasa, H., Takagi, H., & Teramoto, I. (1975). The lambda diode: Versatile negative-resistance device. Electronics, 13, 105–109.

    Google Scholar 

  • Larentis, S., Nardi, F., Balatti, S., Gilmer, D., & Ielmini, D. (2012). Resistive switching by voltage-driven ion migration in bipolar rram-part ii: Modeling. IEEE Transactions on Electron Devices, 59, 2468–2475.

    Article  Google Scholar 

  • Levy, Y., Bruck, J., Cassuto, Y., Friedman, E., Kolodny, A., Yaacobi, E., et al. (2014). Logic operation in memory using a memristive akers array. Microelectronics Journal, 45, 1429–1437.

    Article  Google Scholar 

  • Nardi, F., Larentis, S., Balatti, S., Gilmer, D., & Ielmini, D. (2012). Resistive switching by voltage-driven ion migration in bipolar rram-part i: Experimental study. IEEE Transactions on Electron Devices, 59, 2461–2467.

    Article  Google Scholar 

  • On Semiconductor, U. (2005). Thyristor theory and design considerations. http://onsemi.com.

  • Pan, F., Gao, S., Chen, C., Song, C., & Zeng, F. (2014). Recent progress in resistive random access memories: Materials, switching mechanisms and performance. Materials Science and Engineering R, Elsevier, 83, 1–59.

    Article  Google Scholar 

  • Pickett, M., Strukov, D., Borghetti, J., Yang, J., Snider, G., Stewart, D., et al. (2009). Switching dynamics in titanium dioxide memristive devices. Journal of Applied Physics, 106, 074508-1–074508-6.

    Article  Google Scholar 

  • Powerex Inc, U. (2015). BS08D-T112 silicon bilateral switch. http://www.pwrx.com/Product/BS08D-T112.

  • Slesazeck, S., Mähne, H., Wylezich, H., Wachowiak, A., Radhakrishnan, J., & Ascoli, A., et al. (2015). Physical model of threshold switching in nbo\(_2\) based memristors. RSC Advances, Royal Society of Chemistry.

    Google Scholar 

  • Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453, 80–83.

    Article  Google Scholar 

  • Talati, N., Gupta, S., Mane, P., & Kvatinsky, S. (2016). Logic design within memristive memories using memristor aided logic (magic). IEEE Transactions on Nanotechnology, 15, 635–650.

    Article  Google Scholar 

  • Tzouvadaki, I., Jolly, P., Lu, X., Ingebrandt, S., de Micheli, G., Estrela, P., & Carrara, S. (2016a). Label-free ultrasensitive memristive aptasensor. Nanoletters, 16, 4472–4476.

    Google Scholar 

  • Tzouvadaki, I., Madaboosi, N., Taurino, I., Chu, V., Conde, J., de Micheli, G., & Carrara, S. (2016b). Study on the bio-functionalization of memristive nanowires for optimum memristive biosensors. RSC Journal of Materials Chemistry B, 4, 2153–2162.

    Google Scholar 

  • Vaidyanathan, S., & Volos, C. (2016a). Advances and applications in chaotic systems. Berlin, Germany: Springer.

    Book  MATH  Google Scholar 

  • Vaidyanathan, S., & Volos, C. (2016b). Advances and applications in nonlinear control systems. Berlin, Germany: Springer.

    Book  MATH  Google Scholar 

  • Vallero, A., Tzouvadaki, I., Puppo, F., Doucey, M. -A., Delaloye, J. -F., Micheli, G. D., & Carrara, S. (2016). Memristive biosensors integration with microfluidic platform. IEEE Transactions on Circuits and Systems-I: Regular Papers.

    Google Scholar 

  • Waser, R., Dittmann, R., Staikov, G., & Szot, K. (2009). Redox-based resistive switching memories—Nanoionic mechanisms, prospects, and challenges. Advanced Materials, 21, 2632–2663.

    Article  Google Scholar 

  • Wylezich, H., Mähne, H., Rensberg, J., Ronning, C., Zahn, P., & Slesazeck, S., et al. (2014). Local ion irradiation induced resistive threshold and memory switching in nb\(_2\)o\(_5\)/nbo\(_x\) films. ACS Applied Materials & Interfaces: American Chemical Society, 1–23.

    Google Scholar 

  • Yang, J. J., Strukov, D. B., & Stewart, D. R. (2013). Memristive devices for computing. Nature Nanotechnology, 8, 13–24.

    Article  Google Scholar 

  • Yi, W., Perner, F., Qureshi, M., Abdalla, H., Pickett, M., Yang, J., et al. (2011). Feedback write scheme for memristive switching devices. Applied Physics A, 102, 973–982.

    Article  Google Scholar 

  • Zamarreño-Ramos, C., Camuñas-Mesa, L. A., Pérez-Carrasco, J. A., Masquelier, T., Serrano-Gotarredona, T., & Linares-Barranco, B. (2011). On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex. Frontiers in Neuroscience, 5, 1–22.

    Article  Google Scholar 

Download references

Acknowledgements

The support from EU COST Action IC1401 and Czech Science Foundation (grant no. \(14-19865\)S) are acknowledged. We also thank the Deutsche Forschung Gesellschaft (DFG) for their financial contribution to the research project “Locally active memristive data processing (LAMP)” under grant number \(TE 257/22-1\). L. Chua’s research is supported by AFOSR Grant FA 9550-13-1-0136.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ascoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ascoli, A., Tetzlaff, R., Chua, L.O., Yi, W., Williams, R.S. (2017). Memristor Emulators: A Note on Modeling. In: Vaidyanathan, S., Volos, C. (eds) Advances in Memristors, Memristive Devices and Systems. Studies in Computational Intelligence, vol 701. Springer, Cham. https://doi.org/10.1007/978-3-319-51724-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51724-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51723-0

  • Online ISBN: 978-3-319-51724-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics