Skip to main content

Optimal Design of Hybrid Powertrain Configurations

  • Chapter
  • First Online:
Hybrid Systems, Optimal Control and Hybrid Vehicles

Part of the book series: Advances in Industrial Control ((AIC))

  • 3218 Accesses

Abstract

Engineers aiming to find efficient hybrid powertrain configurations can benefit greatly from the seamless interaction of multi-objective optimization and optimal control methods. In this chapter, the simultaneous optimization of design parameters and energy management for a fixed parallel hybrid powertrain structure is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Assanis D, Delagrammatikas G, Fellini R, Filipi Z, Liedtke J, Michelena N, Papalambros P, Reyes D, Rosenbaum D, Sales A et al (1999) Optimization approach to hybrid electric propulsion system design. J Struct Mech 27(4):393–421

    Google Scholar 

  2. Barbarisi O, Westervelt ER, Vasca F, Rizzoni G (2005) Power management decoupling control for a hybrid electric vehicle. In: Proceedings of the 44th decision and control conference, IEEE, pp 2012–2017

    Google Scholar 

  3. Boehme T, Metwally O, Becker B, Meinhardt N, Rucht M, Rabba H (2012) A simulation-based comparison of different power split configurations with respect to the system efficiency. In: SAE world congress. Technical paper 2012-01-0438. doi:10.4271/2012-01-0438

  4. Boehme TJ, Becker B, Ruben-Weck M, Rothschuh M, Boldt A, Rollinger C, Butz R, Rabba H (2013) Optimal design strategies for different hybrid powertrain configurations assessed with European drive cycles. In: SAE world congress, Technical paper 2013-01-1751. doi:10.4271/2013-01-1751

  5. Boehme TJ, Frank B, Schori M, Jeinsch T (2014a) Multi-objective optimal powertrain design of parallel hybrid vehicles with respect to fuel consumption and driving performance. In: Proceedings of the 2014 European control conference (ECC). IEEE, pp 1017–1023

    Google Scholar 

  6. Boehme TJ, Rothschuh M, Frank B, Schultalbers M, Schori M, Jeinsch T (2014) Multi-objective optimal design of parallel plug-in hybrid powertrain configurations with respect to fuel consumption and driving performance. SAE Int J Alt Power 3(2):176–192. doi:10.4271/2014-01-1158

    Article  Google Scholar 

  7. Cook R, Molina-Cristobal A, Parks G, Correa CO, Clarkson PJ (2007) Multi-objective optimisation of a hybrid electric vehicle: drive train and driving strategy. Springer

    Google Scholar 

  8. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197

    Article  Google Scholar 

  9. Ehsani M, Gao Y, Emadi A (2010) Modern electric, hybrid electric, and fuel cell vehicles. Fundamentals, theory, and design, 2nd edn. CRC Press

    Google Scholar 

  10. Guzzella L, Sciarretta A (2005) Vehicle propulsion systems. Introduction to modeling and optimization. Springer, Berlin

    Google Scholar 

  11. Hu X, Johannesson L, Murgovski N, Egardt B (2015) Longevity-conscious dimensioning and power management of the hybrid energy storage system in a fuel cell hybrid electric bus. Appl Energy 137:913–924

    Article  Google Scholar 

  12. Johannesson L, Murgovski N, Ebbesen S, Egardt B, Gelso E, Hellgren J (2013) Including a battery state of health model in the HEV component sizing and optimal control problem. In: Proceedings of the 7th IFAC symposium on advances in automotive control, Tokyo, Japan, pp 388–393

    Google Scholar 

  13. Jörg A et al (2010) Optimale Auslegung und Betriebsführung von Hybridfahrzeugen. PhD thesis, Technische Universität München

    Google Scholar 

  14. Kaushal N, Shiau CSN, Michalek JJ (2009) Optimal plug-in hybrid electric vehicle design and allocation for diverse charging patterns. In: ASME 2009 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers, pp 899–908

    Google Scholar 

  15. Kleimaier A (2004) Optimale Betriebsführung von Hybridfahrzeugen. PhD thesis, Technische Universität München

    Google Scholar 

  16. Kolmanovsky IV, Sivashankar SN, Sun J (2005) Optimal control-based powertrain feasibility assessment: a software implementation perspective. In: Proceedings of the American control conference. IEEE, pp 4452–4457

    Google Scholar 

  17. Koprubasi K, Morbitzer J, Westervelt E, Rizzoni G (2006) Toward a framework for the hybrid control of a multi-mode hybrid-electric driveline. In: Proceedings of the American control conference. Minneapolis, IEEE, pp 3296–3301

    Google Scholar 

  18. Liu J (2007) Modeling, configuration and control optimization of power-split hybrid vehicles. PhD thesis, The University of Michigan

    Google Scholar 

  19. Moura SJ, Callaway DS, Fathy HK, Stein JL (2010) Tradeoffs between battery energy capacity and stochastic optimal power management in plug-in hybrid electric vehicles. J Power Sources 195(9):2979–2988

    Article  Google Scholar 

  20. Neglur S, Ferdowsi M (2009) Effect of battery capacity on the performance of plug-in hybrid electric vehicles. In: Vehicle power and propulsion conference 2009, VPPC’09. IEEE, pp 649–654

    Google Scholar 

  21. Patil R, Adornato B, Filipi Z (2010) Design optimization of a series plug-in hybrid electric vehicle for real-world driving conditions. SAE Int J Engines 3(2010-01-0840):655–665

    Google Scholar 

  22. Patil RM (2012) Combined design and control optimization: application to optimal PHEV design and control for multiple objectives. PhD thesis, The University of Michigan

    Google Scholar 

  23. Pisu P, Koprubasi K, Rizzoni G (2005) Energy management and drivability control problems for hybrid electric vehicles. In: Proceedings of the 44th IEEE conference on decision and control. IEEE, pp 1824–1830

    Google Scholar 

  24. Pourabdollah M, Grauers A, Egardt B (2013) Effect of driving patterns on components sizing of a series PHEV. In: Proceedings of the 7th IFAC symposium on advances in automotive control, Tokyo, Japan, pp 17–22

    Google Scholar 

  25. Rechs M, Menne R, Tielkes U, Pingen B (2002) Torque Boost - Drehmomenterhhung und Verbrauchsreduzierung im realen Fahrbetrieb. In: 23. International Wiener Motorensymposium

    Google Scholar 

  26. Rousseau A, Shidore N, Carlson R, Freyermuth V (2007) Research on PHEV battery requirements and evaluation of early prototypes. Technical report, Argonne National Laboratory

    Google Scholar 

  27. Rousseau A, Pagerit S, Gao DW (2008) Plug-in hybrid electric vehicle control strategy parameter optimization. J Asian Electr Veh 6(2):1125–1133

    Article  Google Scholar 

  28. Schäfer R (2014) Gemischt-ganzzahlige Optimalsteuerung, Sensitivitätsanalyse und Echtzeitoptimierung von Parallel-Hybridfahrzeugen. Master’s thesis, Universität Bremen

    Google Scholar 

  29. Sciarretta A, di Domenico D, Pognant-Gros P, Zito G (2014) Optimal energy management of automotive battery systems including thermal dynamics and aging. In: Optimization and optimal control in automotive systems. Springer, pp 219–236

    Google Scholar 

  30. Serrao L, Onori S, Sciaretta A, Guezennec Y, Rizzoni G (2011) Optimal energy management of hybrid electric vehicles including battery aging. In: Proceedings of the 2011 American control conference. IEEE, San Francisco, pp 2125–2130

    Google Scholar 

  31. Shiau CSN, Kaushal N, Hendrickson CT, Peterson SB, Whitacre JF, Michalek JJ (2010) Optimal plug-in hybrid electric vehicle design and allocation for minimum life cycle cost, petroleum consumption, and greenhouse gas emissions. J Mech Des 132(9):1–11

    Article  Google Scholar 

  32. Smith K, Earleywine M, Wood E, Neubauer J, Pesaran A (2012) Comparison of plug-in hybrid electric vehicle battery life across geographies and drive cycles. In: SAE world congress, Technical paper 2012-01-0666. doi:10.4271/2012-01-0666

  33. Sullivan J, Gaines L et al (2010) A review of battery life-cycle analysis: state of knowledge and critical needs. Technical report, Argonne National Laboratory (ANL)

    Google Scholar 

  34. Sundström O, Guzzella L, Soltic P (2010) Torque-assist hybrid electric powertrain sizing: from optimal control towards a sizing law. IEEE Trans Control Syst Technol 18. doi:10.1109/TCST.2009.2030173

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Böhme .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Böhme, T.J., Frank, B. (2017). Optimal Design of Hybrid Powertrain Configurations. In: Hybrid Systems, Optimal Control and Hybrid Vehicles. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-51317-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51317-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51315-7

  • Online ISBN: 978-3-319-51317-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics