Skip to main content

Checkable Conditions for Contraction After Small Transients in Time and Amplitude

  • Chapter
  • First Online:
Feedback Stabilization of Controlled Dynamical Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 473))

Abstract

Contraction theory is a powerful tool for proving asymptotic properties of nonlinear dynamical systems including convergence to an attractor and entrainment to a periodic excitation. We consider generalizations of contraction with respect to a norm that allow contraction to take place after small transients in time and/or amplitude. These generalized contractive systems (GCSs) are useful for several reasons. First, we show that there exist simple and checkable conditions guaranteeing that a system is a GCS, and demonstrate their usefulness using several models from systems biology. Second, allowing small transients does not destroy the important asymptotic properties of contractive systems like convergence to a unique equilibrium point, if it exists, and entrainment to a periodic excitation. Third, in some cases as we change the parameters in a contractive system it becomes a GCS just before it looses contractivity with respect to a norm. In this respect, generalized contractivity is the analogue of marginal stability in Lyapunov stability theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the proof that IC implies ST used a result for time-invariant systems, but an analogous argument holds for the time-varying case as well.

References

  1. Aminzare, Z., Sontag, E.D.: Logarithmic lipschitz norms and diffusion-induced instability. Nonlinear Anal. Theory Methods Appl. 83, 31–49 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aminzare, Z., Sontag, E.D.: Contraction methods for nonlinear systems: a brief introduction and some open problems. In: Proceedings of 53rd IEEE Conference on Decision and Control, Los Angeles, CA, pp. 3835–3847 (2014)

    Google Scholar 

  3. Andrieu, V., Jayawardhana, B., Praly, L.: On transverse exponential stability and its use in incremental stability, observer and synchronization. In: Proceedings of 52nd IEEE Conference on Decision and Control, Florence, Italy, pp. 5915–5920 (2013)

    Google Scholar 

  4. Angeli, D.: A Lyapunov approach to incremental stability properties. IEEE Trans. Autom. Control 47, 410–421 (2002)

    Article  MathSciNet  Google Scholar 

  5. Angeli, D., Sontag, E.D.: Monotone control systems. IEEE Trans. Autom. Control 48, 1684–1698 (2003)

    Article  MathSciNet  Google Scholar 

  6. Arcak, M.: Certifying spatially uniform behavior in reaction-diffusion PDE and compartmental ODE systems. Automatica 47(6), 1219–1229 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arcak, M., Sontag, E.D.: Diagonal stability of a class of cyclic systems and its connection with the secant criterion. Automatica 42(9), 1531–1537 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Aylward, E.M., Parrilo, P.A., Slotine, J.J.E.: Stability and robustness analysis of nonlinear systems via contraction metrics and SOS programming. Automatica 44(8), 2163–2170 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Blythe, R.A., Evans, M.R.: Nonequilibrium steady states of matrix-product form: a solver’s guide. J. Phys. A Math. Theor. 40(46), R333–R441 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonnabel, S., Astolfi, A., Sepulchre, R.: Contraction and observer design on cones. In: Proceedings of 50th IEEE Conf. on Decision and Control and European Control Conference, Orlando, FL, pp. 7147–7151 (2011)

    Google Scholar 

  11. Border, K.C.: Fixed Point Theorems with Applications to Economics and Game Theory. Cambridge University Press (1985)

    Google Scholar 

  12. Chakerian, G.D., Sangwine-Yager, J.R.: Synopsis and exercises for the theory of convex sets (2009). https://www.math.ucdavis.edu/deloera/TEACHING/MATH114/

  13. Csikasz-Nagy, A., Cardelli, L., Soyer, O.S.: Response dynamics of phosphorelays suggest their potential utility in cell signaling. J. Roy. Soc. Interface 8, 480–488 (2011)

    Article  Google Scholar 

  14. Del Vecchio, D., Ninfa, A.J., Sontag, E.D.: Modular cell biology: retroactivity and insulation. Mol. Syst. Biol. 4(1), 161 (2008)

    Google Scholar 

  15. Desoer, C., Haneda, H.: The measure of a matrix as a tool to analyze computer algorithms for circuit analysis. IEEE Trans. Circuit Theory 19, 480–486 (1972)

    Article  MathSciNet  Google Scholar 

  16. Desoer, C., Vidyasagar, M.: Feedback Synthesis: Input-Output Properties. SIAM, Philadelphia, PA (2009)

    Book  MATH  Google Scholar 

  17. Dorfler, F., Bullo, F.: Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators. SIAM J. Control Optim. 50, 1616–1642 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Forni, F., Sepulchre, R.: A differential Lyapunov framework for contraction analysis. IEEE Trans. Autom. Control 59(3), 614–628 (2014)

    Article  MathSciNet  Google Scholar 

  19. Jacquez, J.A., Simon, C.P.: Qualitative theory of compartmental systems. SIAM Rev. 35(1), 43–79 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jouffroy, J.: Some ancestors of contraction analysis. In: Proceedings of 44th IEEE Conference on Decision and Control, Seville, Spain, pp. 5450–5455 (2005)

    Google Scholar 

  21. Lohmiller, W., Slotine, J.J.E.: On contraction analysis for non-linear systems. Automatica 34, 683–696 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lohmiller, W., Slotine, J.J.E.: Control system design for mechanical systems using contraction theory. IEEE Trans. Autom. Control 45, 984–989 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Margaliot, M., Sontag, E.D., Tuller, T.: Entrainment to periodic initiation and transition rates in a computational model for gene translation. PLoS ONE 9(5), e96,039 (2014)

    Google Scholar 

  24. Margaliot, M., Sontag, E.D., Tuller, T.: Contraction after small transients. Automatica 67, 178–184 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Margaliot, M., Tuller, T.: On the steady-state distribution in the homogeneous ribosome flow model. IEEE/ACM Trans. Comput. Biol. Bioinform. 9, 1724–1736 (2012)

    Article  Google Scholar 

  26. Margaliot, M., Tuller, T.: Stability analysis of the ribosome flow model. IEEE/ACM Trans. Comput. Biol. Bioinform. 9, 1545–1552 (2012)

    Article  Google Scholar 

  27. Margaliot, M., Tuller, T.: Ribosome flow model with positive feedback. J. Roy. Soc. Interface 10, 20130, 267 (2013)

    Google Scholar 

  28. Pham, Q.C., Tabareau, N., Slotine, J.J.: A contraction theory approach to stochastic incremental stability. IEEE Trans. Autom. Control 54, 816–820 (2009)

    Article  MathSciNet  Google Scholar 

  29. Poker, G., Zarai, Y., Margaliot, M., Tuller, T.: Maximizing protein translation rate in the nonhomogeneous ribosome flow model: a convex optimization approach. J. Roy. Soc. Interface 11(100), 20140, 713 (2014)

    Google Scholar 

  30. Raveh, A., Margaliot, M., Sontag, E.D., Tuller, T.: A model for competition for ribosomes in the cell. J. Roy. Soc. Interface 13(116) (2016)

    Google Scholar 

  31. Raveh, A., Zarai, Y., Margaliot, M., Tuller, T.: Ribosome flow model on a ring. IEEE/ACM Trans. Comput. Biol. Bioinform. 12(6), 1429–1439 (2015)

    Article  Google Scholar 

  32. Reuveni, S., Meilijson, I., Kupiec, M., Ruppin, E., Tuller, T.: Genome-scale analysis of translation elongation with a ribosome flow model. PLoS Comput. Biol. 7, e1002, 127 (2011)

    Google Scholar 

  33. Rüffer, B.S., van de Wouw, N., Mueller, M.: Convergent systems versus incremental stability. Syst. Control Lett. 62, 277–285 (2013)

    Article  MATH  Google Scholar 

  34. Russo, G., Di Bernardo, M., Sontag, E.D.: Global entrainment of transcriptional systems to periodic inputs. PLoS Comput. Biol. 6, e1000, 739 (2010)

    Google Scholar 

  35. Russo, G., di Bernardo, M., Sontag, E.D.: A contraction approach to the hierarchical analysis and design of networked systems. IEEE Trans. Autom. Control 58, 1328–1331 (2013)

    Article  Google Scholar 

  36. Sandberg, I.W.: On the mathematical foundations of compartmental analysis in biology, medicine, and ecology. IEEE Trans. Circuits Syst. 25(5), 273–279 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  37. Simpson-Porco, J.W., Bullo, F.: Contraction theory on Riemannian manifolds. Syst. Control Lett. 65, 74–80 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Slotine, J.J.E.: Modular stability tools for distributed computation and control. Int. J. Adapt. Control Signal Process. 17, 397–416 (2003)

    Google Scholar 

  39. Smith, H.L.: Monotone Dynamical Systems: an Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, vol. 41. American Mathematical Society, Providence, RI (1995)

    Google Scholar 

  40. Soderlind, G.: The logarithmic norm. history and modern theory. BIT Numer. Math. 46, 631–652 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sontag, E.D.: Mathematical control theory: deterministic finite-dimensional systems. In: Texts in Applied Mathematics, vol. 6, 2 edn. Springer, New York (1998)

    Google Scholar 

  42. Sontag, E.D., Margaliot, M., Tuller, T.: On three generalizations of contraction. In: Proceedings of 53rd IEEE Conference on Decision and Control, pp. 1539–1544. Los Angeles, CA (2014)

    Google Scholar 

  43. Vidyasagar, M.: Nonlinear Systems Analysis. Prentice Hall, Englewood Cliffs, NJ (1978)

    MATH  Google Scholar 

  44. Wang, W., Slotine, J.J.: On partial contraction analysis for coupled nonlinear oscillators. Biol. Cybern. 92, 38–53 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zamani, M., van de Wouw, N., Majumdar, R.: Backstepping controller synthesis and characterizations of incremental stability. Syst. Control Lett. 62(10), 949–962 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zarai, Y., Margaliot, M., Tuller, T.: Explicit expression for the steady state translation rate in the infinite-dimensional homogeneous ribosome flow model. IEEE/ACM Trans. Comput. Biol. Bioinform. 10, 1322–1328 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Zvi Artstein and George Weiss for helpful comments. EDS’s work is supported in part by grants NIH 1R01GM100473, AFOSR FA9550-14-1-0060, and ONR N00014-13-1-0074. The research of MM and TT is partly supported by a research grant from the Israeli Ministry of Science, Technology and Space. The research of EDS, MM and TT is also supported by a research grant from the US-Israel Binational Science Foundation. We thank an anonymous reviewer for carefully reading this chapter and providing us several useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Margaliot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Margaliot, M., Tuller, T., Sontag, E.D. (2017). Checkable Conditions for Contraction After Small Transients in Time and Amplitude. In: Petit, N. (eds) Feedback Stabilization of Controlled Dynamical Systems. Lecture Notes in Control and Information Sciences, vol 473. Springer, Cham. https://doi.org/10.1007/978-3-319-51298-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51298-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51297-6

  • Online ISBN: 978-3-319-51298-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics