Skip to main content

Representations of Finite Groups in Greater Detail

  • Chapter
  • First Online:
Algebra II

Abstract

Everywhere in this section, we write by default G for an arbitrary finite group and \(\mathbb{k}\) for an algebraically closed field such that \(\mathop{\mathrm{char}}\nolimits (\mathbb{k}) \nmid \vert G\vert \).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that this fails if \(\mathop{\mathrm{char}}\nolimits \mathbb{k}\mid \vert G\vert \).

  2. 2.

    See Theorem 5.5 on p. 117.

  3. 3.

    See Proposition 6.1 on p. 133.

  4. 4.

    Do not confuse these additive characters of arbitrary groups with the multiplicative characters of abelian groups considered in Sect. 5.4.2 on p. 111.

  5. 5.

    See Sect. 5.4 on p. 109.

  6. 6.

    See Definition 5.1 on p. 109.

  7. 7.

    See Lemma 7.1 in Sect. 7.1.1 of Algebra I.

  8. 8.

    See Sects. 10.3.1 and 16.1.1 of Algebra I.

  9. 9.

    See formula (6.4) on p. 132.

  10. 10.

    See Examples 18.3, 18.4 of Algebra I.

  11. 11.

    See Examples 10.1, 10.2 of Algebra I.

  12. 12.

    See formula (6.23) on p. 137.

  13. 13.

    In Theorem 10.2 on p. 233 we will see that for every normal abelian subgroup \(H\lhd G\), the dimension of every irreducible G-module divides the index [G: H].

  14. 14.

    See Proposition 12.2 in Sect. 12.5.2 of Algebra I.

  15. 15.

    See Sect. 5.4 on p. 109.

  16. 16.

    See formula (6.21) on p. 23.

  17. 17.

    See the comments to Exercise 6.7.

  18. 18.

    See Exercise 6.7 on p. 138 about the dodecahedral representations, and Example 12.12 in Sect. 12.4 of Algebra I for more details about the isomorphism between A 5 and the proper dodecahedral group.

  19. 19.

    See Sect. 6.2.3 on p. 140.

  20. 20.

    Recall that \(Q_{8} =\{ \pm \mathbf{1},\pm \boldsymbol{i},\pm \boldsymbol{j},\pm \boldsymbol{k}\} \subset \mathbb{H}\) is the group of quaternionic units, and D 4 the group of the square.

  21. 21.

    Called the Heisenberg group over \(\mathbb{F}_{2}\).

  22. 22.

    That is, with trivial kernel kerϱ = e.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gorodentsev, A.L. (2017). Representations of Finite Groups in Greater Detail. In: Algebra II. Springer, Cham. https://doi.org/10.1007/978-3-319-50853-5_6

Download citation

Publish with us

Policies and ethics