Skip to main content

Automatic Content-Aware Non-photorealistic Rendering of Images

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10072))

Included in the following conference series:

Abstract

Non-photorealistic rendering techniques work on image features and often manipulate a set of characteristics such as edges and texture to achieve a desired depiction of the scene. Most computational photography methods decompose an image using edge preserving filters and work on the resulting base and detail layers independently to achieve desired visual effects. We propose a new approach for content-aware non-photorealistic rendering of images where we manipulate the visually salient and non-salient regions separately. We propose a novel content-aware framework in order to render an image for applications such as detail exaggeration, artificial smoothing, and image abstraction. The processed regions of the image are blended seamlessly with the rest of the image for all these applications. We demonstrate that content awareness of the proposed method leads to automatic generation of non-photorealistic rendering of the same image for the different applications mentioned above.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mansfield, A., Gehler, P., Gool, L., Rother, C.: Scene carving: scene consistent image retargeting. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 143–156. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15549-9_11

    Chapter  Google Scholar 

  2. Avidan, S., Shamir, A.: Seam carving for content-aware image resizing. ACM Trans. Graph. (TOG) 26, 10 (2007). ACM

    Article  Google Scholar 

  3. Yang, M., Wu, Y., Hua, G.: Context-aware visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1195–1209 (2009)

    Article  Google Scholar 

  4. Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans. Graph. (TOG) 21, 257–266 (2002). ACM

    Google Scholar 

  5. Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M., Hoppe, H., Toyama, K.: Digital photography with flash and no-flash image pairs. ACM Trans. Graph. (TOG) 23, 664–672 (2004). ACM

    Article  Google Scholar 

  6. Bae, S., Paris, S., Durand, F.: Two-scale tone management for photographic look. ACM Trans. Graph. (TOG) 25, 637–645 (2006). ACM

    Article  Google Scholar 

  7. Fattal, R., Agrawala, M., Rusinkiewicz, S.: Multiscale shape and detail enhancement from multi-light image collections. ACM Trans. Graph. 26, 51 (2007)

    Article  Google Scholar 

  8. Dong, W.M., Bao, G.B., Zhang, X.P., Paul, J.C.: Fast multi-operator image resizing and evaluation. J. Comput. Sci. Technol. 27, 121–134 (2012)

    Article  Google Scholar 

  9. Bhat, P., Zitnick, C.L., Cohen, M., Curless, B.: Gradientshop: a gradient-domain optimization framework for image and video filtering. ACM Trans. Graph. (TOG) 29, 10 (2010)

    Article  Google Scholar 

  10. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1397–1409 (2013)

    Article  Google Scholar 

  11. Fattal, R.: Edge-avoiding wavelets and their applications. ACM Trans. Graph. (TOG) 28, 22 (2009)

    Google Scholar 

  12. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. (TOG) 27, 67 (2008). ACM

    Article  Google Scholar 

  13. Paris, S., Hasinoff, S.W., Kautz, J.: Local laplacian filters: edge-aware image processing with a laplacian pyramid. ACM Trans. Graph. 30, 68 (2011)

    Article  Google Scholar 

  14. Gastal, E.S., Oliveira, M.M.: Domain transform for edge-aware image and video processing. ACM Trans. Graph. (TOG) 30, 69 (2011). ACM

    Article  Google Scholar 

  15. Subbarao, M., Surya, G.: Depth from defocus: a spatial domain approach. Int. J. Comput. Vis. 13, 271–294 (1994)

    Article  Google Scholar 

  16. Winnemöller, H., Olsen, S.C., Gooch, B.: Real-time video abstraction. ACM Trans. Graph. (TOG) 25, 1221–1226 (2006). ACM

    Article  Google Scholar 

  17. Winnemöller, H.: XDoG: advanced image stylization with eXtended difference-of-Gaussians. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Non-Photorealistic Animation and Rendering, pp. 147–156 (2011). ACM

    Google Scholar 

  18. Fattal, R., Carroll, R., Agrawala, M.: Edge-based image coarsening. ACM Trans. Graph. (TOG) 29, 6 (2009)

    Article  Google Scholar 

  19. McGuire, M., Matusik, W.: Defocus difference matting. In: ACM SIGGRAPH 2005 Sketches, p. 104. ACM (2005)

    Google Scholar 

  20. Favaro, P., Soatto, S.: A geometric approach to shape from defocus. IEEE Trans. Pattern Anal. Mach. Intell. 27, 406–417 (2005)

    Article  Google Scholar 

  21. DeCarlo, D., Santella, A.: Stylization and abstraction of photographs. ACM Trans. Graph. (TOG) 21, 769–776 (2002). ACM

    Article  Google Scholar 

  22. Guastella, D., Valenti, C.: Cartoon filter via adaptive abstraction. J. Vis. Commun. Image Represent. 36, 149–158 (2016)

    Article  Google Scholar 

  23. Shen, X., Hertzmann, A., Jia, J., Paris, S., Price, B., Shechtman, E., Sachs, I.: Automatic portrait segmentation for image stylization. In: Computer Graphics Forum, vol. 35, pp. 93–102. Wiley Online Library (2016)

    Google Scholar 

  24. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: Advances in neural information processing systems, pp. 545–552 (2006)

    Google Scholar 

  25. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  26. Li, Y., Hou, X., Koch, C., Rehg, J., Yuille, A.: The secrets of salient object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 280–287 (2014)

    Google Scholar 

  27. Adobe: Adobe Photoshop Elements 14 - Smart looks (2016). https://helpx.adobe.com/photoshop-elements/how-to/apply-effects-smart-looks.html/. Accessed 7 Apr 2016

  28. Otsu, N.: A threshold selection method from gray-level histograms. Automatica 11, 23–27 (1975)

    Google Scholar 

  29. Rother, C., Kolmogorov, V., Blake, A.: Grabcut: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. (TOG) 23, 309–314 (2004). ACM

    Article  Google Scholar 

  30. Tao, M.W., Johnson, M.K., Paris, S.: Error-tolerant image compositing. Int. J. Comput. Vis. 103, 178–189 (2013)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshay Gadi Patil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Patil, A.G., Raman, S. (2016). Automatic Content-Aware Non-photorealistic Rendering of Images. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science(), vol 10072. Springer, Cham. https://doi.org/10.1007/978-3-319-50835-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50835-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50834-4

  • Online ISBN: 978-3-319-50835-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics