Skip to main content

Comprehensive Parameter Sweep for Learning-Based Detector on Traffic Lights

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10073))

Included in the following conference series:

  • 1844 Accesses

Abstract

Determining the optimal parameters for a given detection algorithm is not straightforward and what ends up as the final values is mostly based on experience and heuristics. In this paper we investigate the influence of three basic parameters in the widely used Aggregate Channel Features (ACF) object detector applied for traffic light detection. Additionally, we perform an exhaustive search for the optimal parameters for the night time data from the LISA Traffic Light Dataset. The optimized detector reaches an Area-Under-Curve of 66.63% on calculated precision-recall curve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dollár, P., Belongie, S., Perona, P.: The fastest pedestrian detector in the west. In: BMVC (2010)

    Google Scholar 

  2. Dollár, P.: Piotr’s Computer Vision Matlab Toolbox (PMT) (2016). http://vision.ucsd.edu/pdollar/toolbox/doc/index.html

  3. Trivedi, M.M., Gandhi, T., McCall, J.: Looking-in and looking-out of a vehicle: computer-vision-based enhanced vehicle safety. IEEE Trans. Intell. Transp. Syst. 8, 108–120 (2007)

    Article  Google Scholar 

  4. Dollar, P., Appel, R., Belongie, S., Perona, P.: Fast feature pyramids for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1532–1545 (2014)

    Article  Google Scholar 

  5. Mogelmose, A., Liu, D., Trivedi, M.M.: Traffic sign detection for US roads: remaining challenges and a case for tracking. In: IEEE Transactions on Intelligent Transportation Systems. pp. 1394–1399 (2014)

    Google Scholar 

  6. Jensen, M.B., Philipsen, M.P., Møgelmose, A., Moeslund, T.B., Trivedi, M.M.: Traffic light detection at night: comparison of a learning-based detector and three model-based detectors. In: 11th Symposium on Visual Computing (2015)

    Google Scholar 

  7. Das, N., Ohn-Bar, E., Trivedi, M.: On performance evaluation of driver hand detection algorithms: challenges, dataset, and metrics. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems (ITSC), pp. 2953–2958 (2015)

    Google Scholar 

  8. The Insurance Institute for Highway Safety (IIHS): Red light running (2015)

    Google Scholar 

  9. Laboratory for Intelligent, Safe Automobiles, UC San Diego: Vision for Intelligent Vehicles and Applications (VIVA) Challenge (2015). http://cvrr.ucsd.edu/vivachallenge/

  10. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  11. Jensen, M.B., Philipsen, M.P., Møgelmose, A., Moeslund, T.B., Trivedi, M.M.: Vision for looking at traffic lights: issues, survey, and perspectives. IEEE Trans. Intell. Transp. Syst. PP, 1800–1815 (2015)

    Google Scholar 

  12. Diaz-Cabrera, M., Cerri, P., Medici, P.: Robust real-time traffic light detection and distance estimation using a single camera. Expert Syst. Appl. 42, 3911–3923 (2014)

    Article  Google Scholar 

  13. Kim, H.K., Shin, Y.N., Kuk, S.g., Park, J.H., Jung, H.Y.: Night-time traffic light detection based on SVM with geometric moment features. In: 76th World Academy of Science, Engineering and Technology, pp. 571–574 (2013)

    Google Scholar 

  14. Omachi, M., Omachi, S.: Detection of traffic light using structural information. In: IEEE 10th International Conference on Signal Processing (ICSP), pp. 809–812 (2010)

    Google Scholar 

  15. Siogkas, G., Skodras, E., Dermatas, E.: Traffic lights detection in adverse conditions using color, symmetry and spatiotemporal information. In: VISAPP (1), pp. 620–627 (2012)

    Google Scholar 

  16. Sooksatra, S., Kondo, T.: Red traffic light detection using fast radial symmetry transform. In: 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 1–6. IEEE (2014)

    Google Scholar 

  17. Trehard, G., Pollard, E., Bradai, B., Nashashibi, F.: Tracking both pose and status of a traffic light via an interacting multiple model filter. In: 17th International Conference on Information Fusion (FUSION), pp. 1–7. IEEE (2014)

    Google Scholar 

  18. Charette, R., Nashashibi, F.: Traffic light recognition using image processing compared to learning processes. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 333–338 (2009)

    Google Scholar 

  19. Zhang, Y., Xue, J., Zhang, G., Zhang, Y., Zheng, N.: A multi-feature fusion based traffic light recognition algorithm for intelligent vehicles. In: 33rd Chinese Control Conference (CCC), pp. 4924–4929 (2014)

    Google Scholar 

  20. Koukoumidis, E., Martonosi, M., Peh, L.S.: Leveraging smartphone cameras for collaborative road advisories. IEEE Trans. Mob. Comput. 11, 707–723 (2012)

    Article  Google Scholar 

  21. Nienhuser, D., Drescher, M., Zollner, J.: Visual state estimation of traffic lights using hidden Markov models. In: 13th International IEEE Conference on Intelligent Transportation Systems, pp. 1705–1710 (2010)

    Google Scholar 

  22. Franke, U., Pfeiffer, D., Rabe, C., Knoeppel, C., Enzweiler, M., Stein, F., Herrtwich, R.: Making Bertha see. In: IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 214–221 (2013)

    Google Scholar 

  23. Lindner, F., Kressel, U., Kaelberer, S.: Robust recognition of traffic signals. In: IEEE Intelligent Vehicles Symposium, pp. 49–53 (2004)

    Google Scholar 

  24. Barnes, D., Maddern, W., Posner, I.: Exploiting 3D semantic scene priors for online traffic light interpretation. In: Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Seoul, South Korea (2015)

    Google Scholar 

  25. Philipsen, M.P., Jensen, M.B., Møgelmose, A., Moeslund, T.B., Trivedi, M.M.: Traffic light detection: a learning algorithm and evaluations on challenging dataset. In: 18th IEEE Intelligent Transportation Systems Conference (2015)

    Google Scholar 

  26. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88, 303–338 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten B. Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Jensen, M.B., Philipsen, M.P., Moeslund, T.B., Trivedi, M. (2016). Comprehensive Parameter Sweep for Learning-Based Detector on Traffic Lights. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science(), vol 10073. Springer, Cham. https://doi.org/10.1007/978-3-319-50832-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50832-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50831-3

  • Online ISBN: 978-3-319-50832-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics