Skip to main content

Bagging Soft Decision Trees

  • Chapter
  • First Online:
Machine Learning for Health Informatics

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9605))

Abstract

The decision tree is one of the earliest predictive models in machine learning. In the soft decision tree, based on the hierarchical mixture of experts model, internal binary nodes take soft decisions and choose both children with probabilities given by a sigmoid gating function. Hence for an input, all the paths to all the leaves are traversed and all those leaves contribute to the final decision but with different probabilities, as given by the gating values on the path. Tree induction is incremental and the tree grows when needed by replacing leaves with subtrees and the parameters of the newly-added nodes are learned using gradient-descent. We have previously shown that such soft trees generalize better than hard trees; here, we propose to bag such soft decision trees for higher accuracy. On 27 two-class classification data sets (ten of which are from the medical domain), and 26 regression data sets, we show that the bagged soft trees generalize better than single soft trees and bagged hard trees. This contribution falls in the scope of research track 2 listed in the editorial, namely, machine learning algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. John Wiley and Sons, New York (1984)

    MATH  Google Scholar 

  2. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Meteo (1993)

    Google Scholar 

  3. Murthy, S.K., Kasif, S., Salzberg, S.: A system for induction of oblique decision trees. J. Artif. Intell. Res. 2, 1–32 (1994)

    MATH  Google Scholar 

  4. Yıldız, O.T., Alpaydın, E.: Linear discriminant trees. Int. J. Pattern Recogn. Artif. Intell. 19(3), 323–353 (2005)

    Article  Google Scholar 

  5. Guo, H., Gelfand, S.B.: Classification trees with neural network feature extraction. IEEE Trans. Neural Netw. 3, 923–933 (1992)

    Article  Google Scholar 

  6. Yıldız, O.T., Alpaydın, E.: Omnivariate decision trees. IEEE Trans. Neural Netw. 12(6), 1539–1546 (2001)

    Article  Google Scholar 

  7. Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the EM algorithm. Neural Comput. 6, 181–214 (1994)

    Article  Google Scholar 

  8. İrsoy, O., Yıldız, O.T., Alpaydın, E.: Soft decision trees. In: Proceedings of the International Conference on Pattern Recognition, Tsukuba, Japan, pp. 1819–1822 (2012)

    Google Scholar 

  9. Breiman, L.: Bagging predictors. Mach. Learn. 26, 123–140 (1996)

    MATH  Google Scholar 

  10. Ruta, A., Li, Y.: Learning pairwise image similarities for multi-classification using kernel regression trees. Pattern Recogn. 45, 1396–1408 (2011)

    Article  Google Scholar 

  11. Yıldız, O.T., Alpaydın, E.: Regularizing soft decision trees. In: Proceedings of the International Conference on Computer and Information Sciences, Paris, France (2013)

    Google Scholar 

  12. Ulaş, A., Semerci, M., Yıldız, O.T., Alpaydın, E.: Incremental construction of classifier and discriminant ensembles. Inf. Sci. 179, 1298–1318 (2009)

    Article  Google Scholar 

  13. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Blake, C., Merz, C.: UCI repository of machine learning databases (2000)

    Google Scholar 

  15. Kulp, D., Haussler, D., Reese, M.G., Eeckman, F.H.: A generalized hidden markov model for the recognition of human genes in dna. In: International Conference on Intelligent Systems for Molecular Biology (1996)

    Google Scholar 

  16. Liu, L., Han, H., Li, J., Wong, L.: An in-silico method for prediction of polyadenylation signals in human sequences. In: International Conference on Genome Informatics (2003)

    Google Scholar 

  17. Rasmussen, C.E., Neal, R.M., Hinton, G., van Camp, D., Revow, M., Ghahramani, Z., Kustra, R., Tibshirani, R.: Delve data for evaluating learning in valid experiments (1996)

    Google Scholar 

  18. Ulaş, A., Yıldız, O.T., Alpaydın, E.: Eigenclassifiers for combining correlated classifiers. Inf. Sci. 187, 109–120 (2012)

    Article  MathSciNet  Google Scholar 

  19. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20, 832–844 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by Boğaziçi University Research Funds with Grant Number 14A01P4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olcay Taner Yıldız .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Yıldız, O.T., İrsoy, O., Alpaydın, E. (2016). Bagging Soft Decision Trees. In: Holzinger, A. (eds) Machine Learning for Health Informatics. Lecture Notes in Computer Science(), vol 9605. Springer, Cham. https://doi.org/10.1007/978-3-319-50478-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50478-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50477-3

  • Online ISBN: 978-3-319-50478-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics