Skip to main content

Directed Evolution of an Allosteric Tryptophan Synthase to Create a Platform for Synthesis of Noncanonical Amino Acids

  • Chapter
  • First Online:
Directed Enzyme Evolution: Advances and Applications

Abstract

Tryptophan and its derivatives are important natural products and have many biochemical and synthetic applications. However, the more elaborate these derivatives are, the more complex the synthesis becomes. In this chapter, we summarize the development of an engineered enzymatic platform for synthesis of diverse tryptophan analogs. This endeavor utilizes the tryptophan synthase (TrpS) enzyme, an α2β2 heterodimeric protein complex that catalyzes the last two steps in the biosynthetic pathway of tryptophan. Although the synthetically useful reaction (indole + Ser = Trp) takes place in the β-subunit (TrpB), the exquisite allosteric regulation of this enzyme impedes the use of isolated TrpB due to its dramatically decreased activity in the absence of the α-subunit (TrpA). This chapter discusses our efforts to engineer TrpB to serve as a general platform for the synthesis of noncanonical amino acids. We used directed evolution to enhance the activity of TrpB from Pyrococcus furiosus (PfTrpB), so that it can act as a stand-alone biocatalyst. Remarkably, we found that mutational activation mimics the allosteric activation induced by binding of TrpA. Toward our goal of expanding the substrate scope of this reaction, we activated other homologs with the same mutations discovered for PfTrpB. We found improved catalysts for the synthesis of 5-substituted tryptophans, an important biological motif. Finally, we performed directed evolution of TrpB for synthesis of β-branched amino acids, a group of products whose chemical syntheses are particularly challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang J, Wu C, Sheng J, Feng X (2016) Molecular basis of 5-hydroxytryptophan synthesis in Saccharomyces cerevisiae. Mol Biosyst 12(5):1432–1435

    Article  CAS  PubMed  Google Scholar 

  2. Ikeda M et al (1965) Studies on the biosynthesis of nicotinamide adenine dinucleotide: II. A role of picolinic carboxylase in the biosynthesis of nicotinamide adenine dinucleotide from tryptophan in mammals. J Biol Chem 240(3):1395–1401

    CAS  PubMed  Google Scholar 

  3. Stepanova AN et al (2008) TAA1-Mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133(1):177–191

    Article  CAS  PubMed  Google Scholar 

  4. Tao Y et al (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133(1):164–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barry SM et al (2012) Cytochrome P450-catalyzed l-tryptophan nitration in thaxtomin phytotoxin biosynthesis. Nat Chem Biol 8(10):814–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kieffer ME, Repka LM, Reisman SE (2012) Enantioselective synthesis of tryptophan derivatives by a tandem Friedel-Crafts conjugate addition/asymmetric protonation reaction. J Am Chem Soc 134(11):5131–5137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kong D et al (2016) Identification of (2S,3S)-β-methyltryptophan as the real biosynthetic intermediate of antitumor agent streptonigrin. Sci Rep 6:20273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zehner S et al (2005) A regioselective tryptophan 5-halogenase is involved in pyrroindomycin biosynthesis in Streptomyces rugosporus LL-42D005. Chem Biol 12(4):445–452

    Article  CAS  PubMed  Google Scholar 

  9. Zou Y et al (2013) Stereospecific biosynthesis of β-methyltryptophan from l-tryptophan features a stereochemical switch. Angew Chem Int Ed 52(49):12951–12955

    Article  CAS  Google Scholar 

  10. Lang K, Chin JW (2014) Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem Rev 114(9):4764–4806

    Article  CAS  PubMed  Google Scholar 

  11. Patel R (2013) Biocatalytic synthesis of chiral alcohols and amino acids for development of pharmaceuticals. Biomolecules 3(4):741

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dunn MF (2012) Allosteric regulation of substrate channeling and catalysis in the tryptophan synthase bienzyme complex. Arch Biochem Biophys 519(2):154–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Corr MJ, Smith DRM, Goss RJM (2016) One-pot access to l-5,6-dihalotryptophans and l-alknyltryptophans using tryptophan synthase. Tetrahedron 72(45):7306–7310

    Google Scholar 

  14. Ferrari D, Niks D, Yang L-H, Miles EW, Dunn MF (2003) Allosteric communication in the tryptophan synthase bienzyme complex: roles of the β-subunit aspartate 305−arginine 141 salt bridge. Biochemistry 42(25):7807–7818

    Article  CAS  PubMed  Google Scholar 

  15. Goss RJM, Newill PLA (2006) A convenient enzymatic synthesis of l-halotryptophans. Chem Commun 47:4924–4925

    Article  Google Scholar 

  16. Perni S, Hackett L, Goss RJ, Simmons MJ, Overton TW (2013) Optimisation of engineered Escherichia coli biofilms for enzymatic biosynthesis of l-halotryptophans. AMB Express 3(1):1–10

    Article  CAS  Google Scholar 

  17. Smith DRM et al (2014) The first one-pot synthesis of l-7-iodotryptophan from 7-iodoindole and serine, and an improved synthesis of other l-7-halotryptophans. Org Lett 16(10):2622–2625

    Article  CAS  PubMed  Google Scholar 

  18. Tsoligkas AN et al (2011) Engineering biofilms for biocatalysis. Chembiochem 12(9):1391–1395

    Article  CAS  PubMed  Google Scholar 

  19. Winn M, Roy AD, Grüschow S, Parameswaran RS, Goss RJM (2008) A convenient one-step synthesis of l-aminotryptophans and improved synthesis of 5-fluorotryptophan. Bioorg Med Chem Lett 18(16):4508–4510

    Article  CAS  PubMed  Google Scholar 

  20. Esaki N, Tanaka H, Miles EW, Soda K (1983) Enzymatic synthesis of S-substituted l-cysteines with tryptophan synthase of Escherichia coli. Agric Biol Chem 47(12):2861–2864

    CAS  Google Scholar 

  21. Ferrari D, Yang LH, Miles EW, Dunn MF (2001) β-D305A Mutant of tryptophan synthase shows strongly perturbed allosteric regulation and substrate specificity. Biochemistry 40(25):7421–7432

    Article  CAS  PubMed  Google Scholar 

  22. Niks D et al (2013) Allostery and substrate channeling in the tryptophan synthase bienzyme complex: evidence for two subunit conformations and four quaternary states. Biochemistry 52(37):6396–6411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barends TRM et al (2008) Structure and mechanistic implications of a tryptophan synthase quinonoid intermediate. Chembiochem 9(7):1024–1028

    Article  CAS  PubMed  Google Scholar 

  24. Lai J et al (2011) X-ray and NMR Crystallography in an enzyme active site: the indoline quinonoid intermediate in tryptophan synthase. J Am Chem Soc 133(1):4–7

    Article  CAS  PubMed  Google Scholar 

  25. Ngo H et al (2007) Allosteric regulation of substrate channeling in tryptophan synthase: modulation of the l-serine reaction in stage I of the β-reaction by α-site ligands. Biochemistry 46(26):7740–7753

    Article  CAS  PubMed  Google Scholar 

  26. Bloom JD, Labthavikul ST, Otey CR, Arnold FH (2006) Protein stability promotes evolvability. Proc Natl Acad Sci U S A 103(15):5869–5874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lane AN, Kirschner K (1983) The catalytic mechanism of tryptophan synthase from Escherichia coli. Eur J Biochem 129(3):571–582

    Article  CAS  PubMed  Google Scholar 

  28. Buller AR et al (2015) Directed evolution of the tryptophan synthase β-subunit for stand-alone function recapitulates allosteric activation. Proc Natl Acad Sci 112(47):14599–14604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Caulkins BG et al (2015) Catalytic roles of beta Lys87 in tryptophan synthase: N-15 solid state NMR studies. Biochim Biophys Acta Protein Proteomics 1854(9):1194–1199

    Article  CAS  Google Scholar 

  30. Sol A, Tsai C-J, Ma B, Nussinov R (2009) The origin of allosteric functional modulation: multiple pre-existing pathways. Structure 17(8):1042–1050

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gerek ZN, Ozkan SB (2011) Change in allosteric network affects binding affinities of PDZ domains: analysis through perturbation response scanning. PLoS Comput Biol 7(10):e1002154

    Article  PubMed  PubMed Central  Google Scholar 

  32. McLeish Tom CB, Cann Martin J, Rodgers Thomas L (2015) Dynamic transmission of protein allostery without structural change: spatial pathways or global modes? Biophys J 109(6):1240–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Suel GM, Lockless SW, Wall MA, Ranganathan R (2003) Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat Struct Mol Biol 10(1):59–69

    Article  Google Scholar 

  34. Woods KN, Pfeffer J (2016) Using THz spectroscopy, evolutionary network analysis methods, and MD simulation to map the evolution of allosteric communication pathways in c-type lysozymes. Mol Biol Evol 33(1):40–61

    Article  CAS  PubMed  Google Scholar 

  35. Raboni S, Bettati S, Mozzarelli A (2005) Identification of the geometric requirements for allosteric communication between the α- and β-Subunits of tryptophan synthase. J Biol Chem 280(14):13450–13456

    Article  CAS  PubMed  Google Scholar 

  36. Weyand M, Schlichting I, Herde P, Marabotti A, Mozzarelli A (2002) Crystal structure of the βSer178 → Pro mutant of tryptophan synthase: a “knock-out” allosteric enzyme. J Biol Chem 277(12):10653–10660

    Article  CAS  PubMed  Google Scholar 

  37. Shi L, Kay LE (2014) Tracing an allosteric pathway regulating the activity of the HslV protease. Proc Natl Acad Sci 111(6):2140–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yoo SJ et al (1996) Purification and characterization of the heat shock proteins HslV and HslU that form a new ATP-dependent protease in Escherichia coli. J Biol Chem 271(24):14035–14040

    Article  CAS  PubMed  Google Scholar 

  39. Gao X et al (2009) Directed evolution and structural characterization of a simvastatin synthase. Chem Biol 16(10):1064–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jiménez-Osés G et al (2014) The role of distant mutations and allosteric regulation on LovD active site dynamics. Nat Chem Biol 10(6):431–436

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hettwer S, Sterner R (2002) A novel tryptophan synthase β-subunit from the hyperthermophile Thermotoga maritima: quaternary structure, steady-state kinetics, and putative physiological role. J Biol Chem 277(10):8194–8201

    Article  CAS  PubMed  Google Scholar 

  42. Hiyama T, Sato T, Imanaka T, Atomi H (2014) The tryptophan synthase β-subunit paralogs TrpB1 and TrpB2 in Thermococcus kodakarensis are both involved in tryptophan biosynthesis and indole salvage. FEBS J 281(14):3113–3125

    Article  CAS  PubMed  Google Scholar 

  43. Dunn MR, Otto C, Fenton KE, Chaput JC (2016) Improving polymerase activity with unnatural substrates by sampling mutations in homologous protein architectures. ACS Chem Biol 11(5):1210–1219

    Article  CAS  PubMed  Google Scholar 

  44. Khanal A, Yu McLoughlin S, Kershner JP, Copley SD (2015) Differential effects of a mutation on the normal and promiscuous activities of orthologs: implications for natural and directed evolution. Mol Biol Evol 32(1):100–108

    Article  CAS  PubMed  Google Scholar 

  45. Lehmann M, Wyss M (2001) Engineering proteins for thermostability: the use of sequence alignments versus rational design and directed evolution. Curr Opin Biotechnol 12(4):371–375

    Article  CAS  PubMed  Google Scholar 

  46. Brinkmann-Chen S et al (2013) General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH. Proc Natl Acad Sci U S A 110(27):10946–10951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kuriyan J, Eisenberg D (2007) The origin of protein interactions and allostery in colocalization. Nature 450(7172):983–990

    Article  CAS  PubMed  Google Scholar 

  48. Merkl R (2007) Modelling the evolution of the archaeal tryptophan synthase. BMC Evol Biol 7(1):1–20

    Article  Google Scholar 

  49. Murciano-Calles J, Romney DK, Brinkmann-Chen S, Buller AR, Arnold FH (2016) A panel of TrpB biocatalysts derived from tryptophan synthase through the transfer of mutations that mimic allosteric activation. Angew Chem Int Ed 55(38):11577–11581

    Article  CAS  Google Scholar 

  50. Durak LJ, Payne JT, Lewis JC (2016) Late-stage diversification of biologically active molecules via chemoenzymatic C–H functionalization. ACS Catal 6(3):1451–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pathak TP, Miller SJ (2013) Chemical tailoring of teicoplanin with site-selective reactions. J Am Chem Soc 135(22):8415–8422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Roy AD, Grüschow S, Cairns N, Goss RJM (2010) Gene expression enabling synthetic diversification of natural products: chemogenetic generation of pacidamycin analogs. J Am Chem Soc 132(35):12243–12245

    Article  CAS  Google Scholar 

  53. Blaser G, Sanderson JM, Batsanov AS, Howard JAK (2008) The facile synthesis of a series of tryptophan derivatives. Tetrahedron Lett 49(17):2795–2798

    Article  CAS  Google Scholar 

  54. Konda-Yamada Y et al (2002) Convenient synthesis of 7′ and 6′-bromo-d-tryptophan and their derivatives by enzymatic optical resolution using d-aminoacylase. Tetrahedron 58(39):7851–7861

    Article  CAS  Google Scholar 

  55. Ma C, Liu X, Yu S, Zhao S, Cook JM (1999) Concise synthesis of optically active ring-A substituted tryptophans. Tetrahedron Lett 40(4):657–660

    Article  CAS  Google Scholar 

  56. Fowler VG et al (2006) Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med 355(7):653–665

    Article  CAS  PubMed  Google Scholar 

  57. Nguyen KT et al (2006) Combinatorial biosynthesis of novel antibiotics related to daptomycin. Proc Natl Acad Sci U S A 103(46):17462–17467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Herger M, van Roye P, Romney DK, Brinkmann-Chen S, Buller AR, Arnold FH (2016) Synthesis of β-branched tryptophan analogs with an engineered variant of tryptophan synthase. J Am Chem Soc 138(27):8388–8391

    Google Scholar 

Download references

Acknowledgments

We gratefully thank Sabine Brinkmann-Chen for a critical reading of this chapter. We also thank David K. Romney for his helpful discussions during the elaboration of the chapter. Javier Murciano-Calles acknowledges financial support from the Alfonso Martín Escudero Foundation. This work was funded through the Jacobs Institute for Molecular Engineering for Medicine and Ruth Kirschstein NIH Postdoctoral Fellowship F32GM110851 (to Andrew R. Buller).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances H. Arnold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Murciano-Calles, J., Buller, A.R., Arnold, F.H. (2017). Directed Evolution of an Allosteric Tryptophan Synthase to Create a Platform for Synthesis of Noncanonical Amino Acids. In: Alcalde, M. (eds) Directed Enzyme Evolution: Advances and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-50413-1_1

Download citation

Publish with us

Policies and ethics