Skip to main content

Simulating the Dynamics of Socio-Economic Systems

  • Chapter
  • First Online:
Networked Governance

Abstract

To the two traditional modes of doing science, in vivo (observation) and in vitro (experimentation), has been added “in silico”: computer simulation. It has become routine in the natural sciences, as well as in systems planning and business process management (Baines et al. 2004; Laguna and Marklund 2013; Paul et al. 1999) to recreate the dynamics of physical systems in computer code. The code is then executed to give outputs that describe how a system evolves from given inputs. Simulation models of simple physical processes, like boiling water or materials rupturing, give precise outputs that reliably match the outcomes of the actual physical system. However, as Winsberg (2010, p. 71) argues, scientists who rely on simulations do so because they “assume as background knowledge that we already know a great deal about how to build good models of the very features of the target system that we are interested in learning about.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Statistics uses simulations for finding numerical solutions, and simulations use statistics for summarizing outcomes, but as types of models they are distinguished respectively by aiming to model the world through statistical expressions of data-generating mechanisms and by aiming to model the world through interactions of decision-making agents.

  2. 2.

    Source: www.theyrule.net; data used with permission.

References

  • Abbott, A. (1988). Transcending general linear reality. Sociol Theory, 6(2), 169. doi:10.2307/202114.

    Article  Google Scholar 

  • Alexander, J. C., Giesen, B., Münch, R., & Smelser, N. J. (Eds.). (1987). The micro-macro link. Berkeley, CA: University of California Press.

    Google Scholar 

  • Anthonisse, J. M. (1971). The rush in a directed graph (Technical report no. BN 9/71). Amsterdam: Stichting Mathematisch Centrum.

    Google Scholar 

  • Arceneaux, K., Gerber, A. S., & Green, D. P. (2010). A cautionary note on the use of matching to estimate causal effects: An empirical example comparing matching estimates to an experimental benchmark. Sociological Methods and Research, 39(2), 256–282. doi:10.1177/0049124110378098.

    Article  Google Scholar 

  • Baines, T., Mason, S., Siebers, P.-O., & Ladbrook, J. (2004). Humans: The missing link in manufacturing simulation? Simulation Modelling Practice and Theory, 12(7–8), 515–526. doi:10.1016/S1569-190X(03)00094-7.

    Article  Google Scholar 

  • Barabási, A.-L. (2011). The network takeover. Nature Physics, 8(1), 14–16. doi:10.1038/nphys2188.

    Article  Google Scholar 

  • Bharathy, G. K., & Silverman, B. (2013). Holistically evaluating agent-based social systems models: A case study. Simulation, 89(1), 102–135. doi:10.1177/0037549712446854.

    Article  Google Scholar 

  • Borgatti, S. P., & Everett, M. G. (1999). Models of core/periphery structures. Social Networks, 21(4), 375–395. doi:10.1016/S0378-8733(99)00019-2.

    Article  Google Scholar 

  • Burton, R. M., & Obel, B. (1995). The validity of computational models in organization science: From model realism to purpose of the model. Computational and Mathematical Organization Theory, 1(1), 57–71. doi:10.1007/BF01307828.

    Article  Google Scholar 

  • Carley, K. M., Morgan, G., Lanham, M., & Pfeffer, J. (2013). Multi-modeling and socio-cultural complexity: Reuse and validation. In D. D. Schmorrow & D. Nicholson (Eds.), Advances in design for cross-cultural activities (pp. 265–274). Boca Raton, FL: Taylor & Francis.

    Google Scholar 

  • Centola, D. (2010). The spread of behavior in an online social network experiment. Science, 329(5996), 1194–1197. doi:10.1126/science.1185231.

    Article  Google Scholar 

  • Chattoe-Brown, E. (2012). How do we convince agent-based modeling agnostics? Religion, Brain and Behavior, 2(3), 201–203. doi:10.1080/2153599X.2012.703448.

    Article  Google Scholar 

  • Davis, G. F., Yoo, M., & Baker, W. E. (2003). The small world of the American corporate elite, 1982-2001. Strategic Organization, 1(3), 301–326. doi:10.1177/14761270030013002.

    Article  Google Scholar 

  • Di Paolo, E. A., Noble, J., & Bullock, S. (2000). Simulation models as opaque thought experiments. In M. A. Bedau, J. S. McCaskill, N. H. Packard, & S. Rasmussen (Eds.), Artificial life VII: proceedings of the seventh international conference on the simulation and synthesis of living systems (pp. 497–506). Cambridge, MA: MIT Press.

    Google Scholar 

  • Dow, M. M., Burton, M. L., & White, D. R. (1982). Network autocorrelation: A simulation study of a foundational problem in regression and survey research. Social Networks, 4(2), 169–200. doi:10.1016/0378-8733(82)90031-4.

    Article  Google Scholar 

  • Epstein, B. (2011). Agent-based modeling and the fallacies of individualism. In P. Humphreys & C. Imbert (Eds.), Models, simulations, and representations (pp. 115–144). New York: Routledge.

    Google Scholar 

  • Epstein, B. (2015). The ant trap: Rebuilding the foundations of the social sciences. Oxford, UK: Oxford University Press.

    Book  Google Scholar 

  • Erikson, E. (2013). Formalist and relationalist theory in social network analysis. Sociol Theory, 31(3), 219–242. doi:10.1177/0735275113501998.

    Article  Google Scholar 

  • Faust, K. (1997). Centrality in affiliation networks. Social Networks, 19(3), 157–191.

    Article  Google Scholar 

  • Feder, S. A. (2002). Forecasting for policy making in the post-Cold War period. Annual Review of Political Science, 5(1), 111–125. doi:10.1146/annurev.polisci.5.102601.115116.

    Article  Google Scholar 

  • Forrester, J. W. (1961). Industrial dynamics. Cambridge, MA: MIT Press.

    Google Scholar 

  • Forrester, J. W. (1969). Urban dynamics. Cambridge, MA: MIT Press.

    Google Scholar 

  • Forrester, J. W. (1971). World dynamics. Waltham, MA: Pegasus Communications.

    Google Scholar 

  • Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), 35–41. doi:10.2307/3033543.

    Article  Google Scholar 

  • Gilbert, G. N. (2008). Agent-based models. Los Angeles, CA: SAGE Publications Ltd..

    Book  Google Scholar 

  • Gilbert, N., & Troitzsch, K. (2005). Simulation for the social scientist (2nd ed.). Maidenhead, UK: Open University Press.

    Google Scholar 

  • Gordon, D. (1999). Ants at work: How an insect society is organized. New York, NY: Free Press.

    Google Scholar 

  • Hayes, R., & Hayes, R. (2014). Agent-based simulation of mass shootings: Determining how to limit the scale of a tragedy. Journal of Artificial Societies and Social Simulation, 17(2), 5.

    Article  Google Scholar 

  • Hennig, M., Brandes, U., Pfeffer, J., & Mergel, I. (2012). Studying social networks: A guide to empirical research. Frankfurt, Germany: Campus Verlag.

    Google Scholar 

  • Johnson, S. B. (2001). Emergence: The connected lives of ants, brains, cities, and software. New York, NY: Scribner.

    Google Scholar 

  • Jucca, L. (2012, March 15). Italy aims to break up clubby bank boards. Milan, Italy: Reuters. Retrieved from http://www.reuters.com/article/2012/03/15/italy-banks-boards-idUSL5E8E50WX20120315

  • Kamiński, B. (2012, April 29). Animating Schelling’s segregation model [blog post]. R-bloggers. http://www.r-bloggers.com/animating-schellings-segregation-model/

  • Kickert, W. J. M., Klijn, E.-H., & Koppenjan, J. F. M. (1997). Introduction. In W. J. M. Kickert, E.-H. Klijn, & J. F. M. Koppenjan (Eds.), Managing complex networks: Strategies for the public sector (pp. 1–13). London, UK: SAGE Publications Ltd..

    Chapter  Google Scholar 

  • Klijn, E.-H., & Teisman, G. R. (1997). Strategies and games in networks. In W. J. M. Kickert, E.-H. Klijn, & J. F. M. Koppenjan (Eds.), Managing complex networks: Strategies for the public sector (pp. 98–118). London, UK: SAGE Publications Ltd..

    Chapter  Google Scholar 

  • Kovacic, A., & Pecek, B. (2007). Use of simulation in a public administration process. Simulation, 83(12), 851–861. doi:10.1177/0037549707087249.

    Article  Google Scholar 

  • Laguna, M., & Marklund, J. (2013). Business process modeling, simulation and design (2nd ed.). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Lieberman, S. (2012). Extensible software for whole of society modeling: Framework and preliminary results. Simulation, 88(5), 557–564. doi:10.1177/0037549711404918.

    Article  Google Scholar 

  • Macy, M. W., & Willer, R. (2002). From factors to actors: Computational sociology and agent-based modeling. Annual Review of Sociology, 28(1), 143–166. doi:10.1146/annurev.soc.28.110601.141117.

    Article  Google Scholar 

  • Maroulis, S., Bakshy, E., Gomez, L., & Wilensky, U. (2014). Modeling the transition to public school choice. Journal of Artificial Societies and Social Simulation, 17(2), 3.

    Article  Google Scholar 

  • Meadows, D. H., Meadows, D. L., & Randers, J. (1972). Limits to growth. New York, NY: Universe Books.

    Google Scholar 

  • Meadows, D. H., Randers, J., & Meadows, D. L. (2004). Limits to growth: The 30-year update (3rd ed.). White River Junction, VT: Chelsea Green Publishing.

    Google Scholar 

  • Medina, F. J. L., Quesada, F. J. M., & Lozano, V. A. (2014). The production of step-level public goods in structured social networks: An agent-based simulation. Journal of Artificial Societies and Social Simulation, 17(1), 4.

    Article  Google Scholar 

  • Paul, R. J., Giaglis, G. M., & Hlupic, V. (1999). Simulation of business processes. American Behavioral Scientist, 42(10), 1551–1576. doi:10.1177/0002764299042010006.

    Article  Google Scholar 

  • Pfeffer, J., & Carley, K. M. (2013). The importance of local clusters for the diffusion of opinions and beliefs in interpersonal communication networks. International Journal of Innovation and Technology Management, 10(5). doi:10.1142/S0219877013400221.

  • Resnick, M. (2001). Turtles, termites, and traffic jams (7th ed.). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Robins, G. L. (2015). Doing social network research: Network-based research design for social scientists. London, UK: SAGE Publications Ltd..

    Google Scholar 

  • Rogers, E. M. (2003). Diffusion of innovations (5th ed.). New York, NY: Free Press.

    Google Scholar 

  • Rosenbaum, P. R. (2007). Interference between units in randomized experiments. Journal of the American Statistical Association, 102(477), 191–200. doi:10.1198/016214506000001112.

    Article  Google Scholar 

  • Schelling, T. C. (1971). Dynamic models of segregation. The Journal of Mathematical Sociology, 1(2), 143–186. doi:10.1080/0022250X.1971.9989794.

    Article  Google Scholar 

  • Schwaninger, M., Neuhofer, S., & Kittel, B. (2017). Contributions of experimental research to networked governance. In B. Hollstein, W. Matiaske, & K.-U. Schnapp (Eds.), Networked governance. New research perspectives. Heidelberg: Springer.

    Google Scholar 

  • Scott, J. (2011). Social physics and social networks. In J. Scott & P. J. Carrington (Eds.), The SAGE handbook of social network analysis (pp. 55–66). London, UK: SAGE Publications Ltd..

    Google Scholar 

  • Shalizi, C. R., & Thomas, A. C. (2011). Homophily and contagion are generically confounded in observational social network studies. Sociological Methods and Research, 40(2), 211–239. doi:10.1177/0049124111404820.

    Article  Google Scholar 

  • Simon, H. A. (1972). Theories of bounded rationality. In C. B. McGuire & R. Radner (Eds.), Decision and organization (pp. 161–176). Amsterdam, Netherlands: North-Holland Publishing Company.

    Google Scholar 

  • Smith, R. D. (2000). Simulation. In A. Ralston, D. Hemmendinger, & E. D. Reilly (Eds.), Encyclopedia of computer science (4th ed.). New York, NY: Grove’s Dictionaries.

    Google Scholar 

  • Stachowiak, H. (1973). Allgemeine Modelltheorie. Vienna, Austria: Springer-Verlag.

    Book  Google Scholar 

  • Streit, R. E., & Borenstein, D. (2009). An agent-based simulation model for analyzing the governance of the Brazilian financial system. Expert Systems with Applications, 36(9), 11489–11501. doi:10.1016/j.eswa.2009.03.043.

    Article  Google Scholar 

  • Valkering, P., Rotmans, J., Krywkow, J., & van der Veen, A. (2005). Simulating stakeholder support in a policy process: An application to river management. Simulation, 81(10), 701–718. doi:10.1177/0037549705060793.

    Article  Google Scholar 

  • Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge, MA: Cambridge University Press.

    Book  Google Scholar 

  • Watts, D. J. (2004). The “new” science of networks. Annual Review of Sociology, 30(1), 243–270. doi:10.1146/annurev.soc.30.020404.104342.

    Article  Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393(6684), 440–442. doi:10.1038/30918.

    Article  Google Scholar 

  • Windrum, P., Fagiolo, G., & Moneta, A. (2007). Empirical validation of agent-based models: Alternatives and prospects. Journal of Artificial Societies and Social Simulation, 10(2), 8.

    Google Scholar 

  • Winsberg, E. B. (2010). Science in the age of computer simulation. Chicago, IL: The University of Chicago Press.

    Book  Google Scholar 

  • Zhao, K., Yen, J., Ngamassi, L.-M., Maitland, C., & Tapia, A. H. (2012). Simulating inter-organizational collaboration network: A multi-relational and event-based approach. Simulation, 88(5), 617–633. doi:10.1177/0037549711421942.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Pfeffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pfeffer, J., Malik, M.M. (2017). Simulating the Dynamics of Socio-Economic Systems. In: Hollstein, B., Matiaske, W., Schnapp, KU. (eds) Networked Governance. Springer, Cham. https://doi.org/10.1007/978-3-319-50386-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50386-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50384-4

  • Online ISBN: 978-3-319-50386-8

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics