Skip to main content

The Impact of Automated Algorithm Configuration on the Scaling Behaviour of State-of-the-Art Inexact TSP Solvers

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10079))

Included in the following conference series:

Abstract

Automated algorithm configuration is a powerful and increasingly widely used approach for improving the performance of algorithms for computationally hard problems. In this work, we investigate the impact of automated algorithm configuration on the scaling of the performance of two prominent inexact solvers for the travelling salesman problem (TSP), EAX and LKH. Using a recent approach for analysing the empirical scaling of running time as a function of problem instance size, we demonstrate that automated configuration impacts significantly the scaling behaviour of EAX. Specifically, by automatically configuring the adaptation of a key parameter of EAX with instance size, we reduce the scaling of median running time from root-exponential (of the form \(a\cdot b^{\sqrt{n}}\)) to polynomial (of the form \(a\cdot n^{b}\)), and thus, achieve an improvement in the state of the art in inexact TSP solving. In our experiments with LKH, we noted overfitting on the sets of training instances used for configuration, which demonstrates the need for more sophisticated configuration protocols for scaling behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 142–157. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04244-7_14

    Chapter  Google Scholar 

  2. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The traveling salesman problem, concorde TSP solver (2012). http://www.tsp.gatech.edu/concorde

  3. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated F-race: an overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp. 311–336. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Dubois-Lacoste, J., Hoos, H.H., Stützle, T.: On the empirical scaling behaviour of state-of-the-art local search algorithms for the Euclidean TSP. In: Proceedings of GECCO 2015, pp. 377–384. ACM Press (2015)

    Google Scholar 

  5. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Helsgaun, K.: General k-opt submoves for the Lin-Kernighan TSP heuristic. Math. Program. Comput. 1(2–3), 119–163 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hoos, H.H.: A bootstrap approach to analysing the scaling of empirical run-time data with problem size. Technical report, TR-2009-16, Department of Computer Science, University of British Columbia (2009)

    Google Scholar 

  8. Hoos, H.H., Stützle, T.: On the empirical scaling of run-time for finding optimal solutions to the travelling salesman problem. Eur. J. Oper. Res. 238(1), 87–94 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hoos, H.H., Stützle, T.: On the empirical time complexity of finding optimal solutions vs proving optimality for Euclidean TSP instances. Optim. Lett. 9, 1247–1257 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  11. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. J. Artif. Intell. Res. 36(1), 267–306 (2009)

    MATH  Google Scholar 

  12. Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: a case study in local optimization. In: Aarts, E.H.L., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimization, pp. 215–310. Wiley, Chichester (1997)

    Google Scholar 

  13. Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP. In: Gutin, G., Punnen, A. (eds.) The Traveling Salesman Problem and Its Variations, pp. 369–443. Kluwer Academic Publishers, New York (2002)

    Google Scholar 

  14. Kotthoff, L., Kerschke, P., Hoos, H., Trautmann, H.: Improving the state of the art in inexact TSP solving using per-instance algorithm selection. In: Dhaenens, C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 202–217. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19084-6_18

    Chapter  Google Scholar 

  15. Mascia, F., Birattari, M., Stützle, T.: Tuning algorithms for tackling large instances: an experimental protocol. In: Nicosia, G., Pardalos, P. (eds.) LION 2013. LNCS, vol. 7997, pp. 410–422. Springer, Heidelberg (2013). doi:10.1007/978-3-642-44973-4_44

    Chapter  Google Scholar 

  16. Mu, Z.: Analysing the empirical time complexity of high-performance algorithms for SAT and TSP. Master’s thesis, University of British Columbia, Vancouver, Canada (2015)

    Google Scholar 

  17. Mu, Z., Hoos, H.H.: Empirical scaling analyser: an automated system for empirical analysis of performance scaling. In: GECCO 2015, Companion, pp. 771–772 (2015)

    Google Scholar 

  18. Mu, Z., Hoos, H.H.: On the empirical time complexity of random 3-SAT at the phase transition. In: Proceedings of IJCAI 2015, pp. 367–373 (2015)

    Google Scholar 

  19. Nagata, Y.: Edge assembly crossover: a high-power genetic algorithm for the traveling salesman problem. In: Proceedings of ICGA 1997, pp. 450–457 (1997)

    Google Scholar 

  20. Nagata, Y., Kobayashi, S.: A powerful genetic algorithm using edge assembly crossover for the traveling salesman problem. INFORMS J. Comput. 25(2), 346–363 (2013)

    Article  MathSciNet  Google Scholar 

  21. Stützle, T., Hoos, H.H.: Analysing the run-time behaviour of iterated local search for the travelling salesman problem. In: Hansen, P., Ribeiro, C. (eds.) Essays and Surveys on Metaheuristics, pp. 589–611. Kluwer Academic Publishers, New York (2001)

    Google Scholar 

  22. Styles, J., Hoos, H.: Ordered racing protocols for automatically configuring algorithms for scaling performance. In: Proceedings of GECCO 2013, pp. 551–558. ACM (2013)

    Google Scholar 

  23. Styles, J., Hoos, H.H., Müller, M.: Automatically configuring algorithms for scaling performance. In: Hamadi, Y., Schoenaur, M. (eds.) LION 6. LNCS, vol. 7219, pp. 205–219. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34413-8_15

    Google Scholar 

Download references

Acknowledgements

HH and ZM acknowledge support through an NSERC Discovery Grant. TS acknowledges support from the Belgian F.R.S.-FNRS, of which he is a senior research associate. This work received support from Compute Canada/Westgrid and from the COMEX project within the Interuniversity Attraction Poles Programme of the Belgian Science Policy Office.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongxu Mu or Holger H. Hoos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Mu, Z., Hoos, H.H., Stützle, T. (2016). The Impact of Automated Algorithm Configuration on the Scaling Behaviour of State-of-the-Art Inexact TSP Solvers. In: Festa, P., Sellmann, M., Vanschoren, J. (eds) Learning and Intelligent Optimization. LION 2016. Lecture Notes in Computer Science(), vol 10079. Springer, Cham. https://doi.org/10.1007/978-3-319-50349-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50349-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50348-6

  • Online ISBN: 978-3-319-50349-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics