Skip to main content

Basic Mathematics

  • Chapter
  • First Online:
Gravity Inversion and Integration

Abstract

The basic mathematics useful for this book is divided into discrete least squares theory, collocation , coordinate systems, Legendre’s polynomials , spherical and ellipsoidal harmonics , the fundamentals of potential theory and regularization . Most numerical applications are based on linear least squares theory, either in the spatial domain (mainly for local studies) or by spherical harmonics in regional and global applications. For example, linear regression analysis, discrete and continuous least squares collocation are described. As problems in geodesy and geophysics are frequently non-linear, the linearization of such a problem is also presented. After introducing Legendre’s polynomials and spherical harmonics, the latter type of series is used for spectral smoothing and combining sets of data. The gravitational potential on and outside the ellipsoid is also presented in ellipsoidal harmonics . One section is devoted to the basics of potential theory , including some basic concepts, Newton ’s integral for the potential, Laplace ’s and Poisson ’s equations and Gauss ’ and Green ’s formulas, as a well as basic boundary value problems, as a background for the rest of the book. Considering that most problems related with gravity inversion are inverse problems, regularization is needed to reach a practical solution. Hence, various approaches to regularization of solutions to inverse problems are shortly described and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bjerhammar A (1973) Theory of errors and generalized matrix inverses. Elsevier, Amsterdam

    Google Scholar 

  • Bjerhammar A (1975) Discrete approaches to the solution of the boundary value problems of physical geodesy. Boll Geod Szi Aff 34(2):185–240

    Google Scholar 

  • Chambers LG (1976) Integral equations—a short course. Int Text Book Co Ltd, London

    Google Scholar 

  • Danby JMA (1988) Fundamentals of celestial mechanics. Willmann-Bell, Richmond

    Google Scholar 

  • Dermanis A (1984) Kriging and collocation—a comparison. Manusc Geod 9(3):159–167

    Google Scholar 

  • Fukushima T (2006) Transformation from Cartesian to geodetic coordinates accelerated by Halley’s method. J Geodesy 79:689–693

    Article  Google Scholar 

  • Ditmar P, Kusche J, Klees R (2003) Computation of spherical harmonics coefficients from gravity gradiometry data to be acquired by the GOCE satellite: regularization issues, J Geod 77:465–477

    Google Scholar 

  • Gleason DM (1988) Comparing ellipsoidal corrections to the transformation between the geopotential’s spherical and ellipsoidal spectrums. Manuscr Geod 13:114–129

    Google Scholar 

  • Hansen PC (1998) Rank-deficient and discrete ill-posed problems. Siam, Philadelphia

    Book  Google Scholar 

  • Heiskanen W, Moritz H (1967) Physical geodesy. W.H. Freeman and company, San Francisco

    Google Scholar 

  • Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS global navigation satellite systems; GPS, Glonass, Galileo & more. Springer, New York, 501pp

    Google Scholar 

  • Hotine M (1969) Mathematical Geodesy, ESSA Monograph 2. U.S. Department of Commerce, Washington, D.C.

    Google Scholar 

  • Krarup T (1969) A contribution to the Mathematical Foundation of Physical Geodesy, Meddelelse No. 44, Geodaetisk Institut, Copenhagen

    Google Scholar 

  • Lauritzen SL (1973) The probabilistic background of some statistical methods in physical geodesy. Danish Geodetic Inst., Meddelelse No. 48, Copenhagen

    Google Scholar 

  • Marquardt DW (1970) Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics 12:591–612 (American Society for Quality and the American Statistical Association)

    Google Scholar 

  • Martinec Z (1998) Boundary–value problems for gravimetric determination of a precise geoid. Lecture notes in earth sciences. Springer, Berlin, Heidelberg

    Google Scholar 

  • Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266

    Article  Google Scholar 

  • Meissl P (1971) Preparation for the numerical evaluation of second order Molodensky-type formulas. Dept Geodetic Science Rep No. 163, Ohio State Univ, Columbus, Ohio

    Google Scholar 

  • Moritz H (1980) Advanced physical geodesy. H Wichmann, Karlsruhe

    Google Scholar 

  • Pavlis NA, Simon AH, Kenyon SC, Factor JK (2012) The development and evaluation of the earth gravitational model 2008 (EGM2008). JGR 117:B04406

    Article  Google Scholar 

  • Phillips DL (1962) A technique for the numerical solution of certain integral equations of the first kind. J Assoc Comput Mach 9:84–97

    Article  Google Scholar 

  • Rapp RH (1981) On the Earth’s gravity field to degree and order 180 using Seastat altimeter data, terrestrial gravity data and OAU data. Report No. 367, Dept Geod Sci and Surv, The OSU, Columbus, OH

    Google Scholar 

  • Rapp RH, Cruz JY (1986) The representation of the Earth’s gravitational potential in a spherical

    Google Scholar 

  • Sjöberg L (1975) On the discrete boundary value problem of physical geodesy with harmonic reduction to an internal sphere. Ph.D. thesis, Dept. of Geod., Royal Inst. of Tech., Stockholm

    Google Scholar 

  • Sjöberg L (1978) The accuracy of geoid undulations by degree implied by mean gravity anomalies on a sphere. OSU, Columbus and The Royal Institute of Technology, Stockholm, May 1978; J Geophys Res 84(B11):6226–6230

    Google Scholar 

  • Sjöberg LE (1979) Integral formulas for heterogeneous data in physical geodesy. Royal Institute of Technology, Stockholm, Nov 1978. Bull Geodesique 53:297–315

    Google Scholar 

  • Sjöberg LE (1980) Least squares combination of satellite harmonics and integral. Formulas in physical geodesy. Gerlands Beitr Geophys 895:371–377

    Google Scholar 

  • Sjöberg LE (1981) Least squares combination of satellite and terrestrial data in physical geodesy. Ann Geophys 371:25–30

    Google Scholar 

  • Sjöberg LE (1984a) Least squares modification of Stokes’ and Vening Meinesz’ formulas by accounting for truncation and potential coefficient errors. Manusc Geod 9:209–229

    Google Scholar 

  • Sjöberg LE (1984b) Least squares modification of Stokes’ and Vening Meinesz’ formulas by accounting for errors of truncation, potential coefficients and gravity data. Dept Geod Report No. 27, University of Uppsala, 16

    Google Scholar 

  • Sjöberg LE (1986) Comparison of some methods of modifying Stokes’ formula. Boll Geod Scie Aff 453:229–248

    Google Scholar 

  • Sjöberg LE (1999) An efficient iterative solution to transform rectangular to geocentric coordinates. Z Vermessungswesen 126(9):295–297

    Google Scholar 

  • Sjöberg LE (2005) A local least-squares modification of Stokes’ formula. Stud Geophys Geod 49:23–30

    Article  Google Scholar 

  • Sjöberg LE (2008) A strict transformation from Cartesian to geodetic coordinates. Surv Rev 40(308):156–163

    Google Scholar 

  • Sjöberg LE (2011a) Geoid determination by spectral combination of an Earth gravitational model with airborne and terrestrial gravimetry. Stud Geophys Geodaet 55(4):57

    Google Scholar 

  • Sjöberg LE (2011b) Local least squares spectral filtering and combination by harmonic functions on the sphere. J Geod Sci 1:355–360

    Google Scholar 

  • Sjöberg LE (2012) Solutions to linear inverse problems on the sphere by Tikhonov regularization, Wiener filtering and spectral combination—a comparison. J Geod Sci 2:31–37

    Google Scholar 

  • Sjöberg LE (2013) Theory of satellite geodesy. Division of Geodesy, Royal Institute of Technology, 143pp (Lecture Notes)

    Google Scholar 

  • Spetzler J, Trampert J (2003) Implementing spectral leakage corrections in global surface wave tomography. Geophys J Int 155:532–538

    Article  Google Scholar 

  • Tarantola A (1987) Inverse problem theory. Methods for data fitting and model parameter estimation. Elsevier, Amsterdam

    Google Scholar 

  • Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems. Winston, Washington, D.C.

    Google Scholar 

  • Trampert J, Snieder R (1996) Model estimations biased by truncated expansions: possible artefacts in seismic tomography. Science 271:1257–1260

    Article  Google Scholar 

  • Wenzel H-G (1981) Zur Geoidbestimmung durch Kombination von Schwereanomalien und einem Kugelfunktionsmodell mit Hilfe von Integralformeln. ZfV 1063:102–111

    Google Scholar 

  • Wiener N (1949) Extrapolation, interpolation and smoothing of stationary time series. Wiley, New York. ISBN 0-262-73005-7

    Google Scholar 

  • Xu P, Rummel R (1994) Generalized ridge regression with applications in determination of potential fields. Manuscr Geod 20:8–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars E. Sjöberg .

Appendix: Answers to Exercises

Appendix: Answers to Exercises

Exercise 2.1

From Eq. (2.37a) one obtains the Taylor series

$$ l_{P0}^{ - 1} = r_{P}^{ - 1} \left[ {1 - \frac{1}{2}\left( {s^{2} - 2st} \right) + \frac{{\left( { - \frac{1}{2}} \right)\left( { - 1 - \frac{1}{2}} \right)}}{1 \times 2}\left( {s^{2} - 2st} \right)^{2} + \cdots } \right] = r_{P}^{ - 1} \left[ {1 + st + s^{2} \frac{{3t^{2} - 1}}{2} + \cdots } \right], $$

and by comparing with Eq. (2.38a) the solution follows.

Exercise 2.2

The left member of Eq. (2.42) yields for n = 0, 1 and 2:

$$ \begin{aligned} & \int\limits_{ - 1}^{1} {1dt = 2} ,\int\limits_{ - 1}^{1} {t^{2} dt = 2/3} \quad {\text{and}}\quad \int\limits_{ - 1}^{1} {\left( {\frac{{3t^{2} - 1}}{2}} \right)^{2} dt} \\ & \quad = \int\limits_{ - 1}^{1} {\left( {\frac{{9t^{4} - 6t^{2} + 1}}{4}} \right)dt} = \frac{1}{4}\left[ {\frac{{9t^{5} }}{5} - \frac{{6t^{3} }}{3} + t} \right]_{ - 1}^{1} = \frac{2}{5}, \\ \end{aligned} $$

The second equation in Eq. (2.42) is shown in the same way.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sjöberg, L.E., Bagherbandi, M. (2017). Basic Mathematics. In: Gravity Inversion and Integration. Springer, Cham. https://doi.org/10.1007/978-3-319-50298-4_2

Download citation

Publish with us

Policies and ethics