Skip to main content

Ultra-High-Frequency Electromagnetic Radiation and Reactive Species in Mammals

  • Chapter
  • First Online:
Microwave Effects on DNA and Proteins

Abstract

The increasing emission of electromagnetic waves by various devices has increased concerns of possible health effects. Exposure to ultra-high-frequency (UHF) radiation is increasing due to the development of wireless communication technologies. This type of radiation has been linked to changes in organisms through the generation of RS (Oxygen and Nitrogen). The aim of this review was to discuss the effects of ultra-high-frequency electromagnetic radiation (UHF-EMR) on the metabolism of RS and its consequences for mammals. It was discussed the relationship of UHF electromagnetic waves with oxidants and antioxidants in mammals. After reviewing several studies, it is concluded that UHF-EMR can cause changes in biomarkers of oxidative/nitrosative damage and can cause decreases in antioxidant defenses, which may result from these biomarkers’ fight against the oxidative damage to macromolecules induced by ROS/RNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad S (1995) Antioxidant mechanisms of enzymes and proteins. In: Ahmad S (ed) Oxidative stress and antioxidant defends in biology. Chapman and Hall, New York, pp 238–272

    Chapter  Google Scholar 

  • Altamura S, Muckenthaler MU (2009) Iron toxicity in diseases of aging: Alzheimer’s disease. Parkinson’s disease and atherosclerosis. J Alzheimers Dis 16:879–895

    Article  PubMed  CAS  Google Scholar 

  • Anderson U, Leighton B, Young ME, Blomstrand E, Neswssholme EA (1998) Inactivation of aconitase and oxiglutarate dehidrogenase in skeletal muscle in vitro by superoxide anions and/or nitric oxide. Biochem Biophys Res Commun 249:512–516

    Article  Google Scholar 

  • Aragon G, Younossi ZM (2010) When and how to evaluate mildly elevated liver enzymes in apparently healthy patients. Cleve Clin J Med 77:195–2004

    Article  PubMed  Google Scholar 

  • Arendash GW, Sanchez-Ramos J, Mori T, Mamcarz M, Lin X, Runfeldt M, Wang L, Zhang G, Sava V, Tan J, Cao C (2010) Electromagnetic field treatment protects against and reverses cognitive impairment in Alzheimer’s disease mice. J Alzheimers Dis 19:191–210

    Article  PubMed  CAS  Google Scholar 

  • Arthur JSC (2007) MAPK activation by radio waves. Biochem J 405:e5–e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augusto O (2006) Free radicals: good, bad and natural (in Portuguese), 1st edn. Office of Texts, São Paulo

    Google Scholar 

  • Aweda MA, Meindinyo ROK, Gbenebitse SO, Ibitoye AZ (2011) Microwave radiation exposures affect cardiovascular system and antioxidants modify the effects. Adv Appl Sci Res 2:246–251

    CAS  Google Scholar 

  • Aziz IA, El-Khozondar HJ, Shabat M, Elwasife K, Mohamed-Osman A (2010) Effect of electromagnetic field on body weight and blood indices in albino rats and the therapeutic action of vitamin C or E. Rom J Biophys 20:235–244

    Google Scholar 

  • Barber T, Borrás E, Torres L, García C, Cabezuelo F, Lloret A, Pallardó FV, Viña JR (2000) Vitamin A deficiency causes oxidative damage to liver mitochondria in rats. Free Radic Biol Med 29:7–9

    Article  Google Scholar 

  • Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxinitrite: the good, the bad, and the ugly. Am J Phys 271:1424–1437

    Google Scholar 

  • Belyaev IY, Hillert L, Protopopova M, Tamm C, Malmgren LO, Persson BR, Selivanova G, Harms-Ringdahl M (2005) 915 MHz microwaves and 50 Hz magnetic field affect chromatin conformation and 53BP1 foci in human lymphocytes from hypersensitive and healthy persons. Bioelectromagnetics 26:173–184

    Article  CAS  PubMed  Google Scholar 

  • Bettger WJ, O’Dell BL (1981) A critical physiological role of zinc in the structure and function of biomembranes. Life Sci 28:1425–1438

    Article  CAS  PubMed  Google Scholar 

  • Bilgici B, Akar A, Avci B, Tuncel OK (2013) Effect of 900 MHz radiofrequency radiation on oxidative stress in rat brain and serum. Electromagn Biol Med 32:20–29

    Article  CAS  PubMed  Google Scholar 

  • Braughler JM, Hall DE (1989) Central nervous systems trauma and stroke: I. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Radic Biol Med 6:289–301

    Article  CAS  PubMed  Google Scholar 

  • Bruno M, Brightman AO, Lawrence J, Werderitsh D, Morret DM, Morre DJ (1992) Stimulation of NADH oxidase activity from rat liver plasma membranes by growth factors and hormones is decreased or absent with hepatoma plasma membranes. Biochem J 284:625–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadenas E (1995) Mechanism of oxygen activation and reactive oxygen species detoxification. In: Ahmad S (ed) Oxidative stress and antioxidant defenses in biology. Champman and Hall, New York, pp 1–61

    Google Scholar 

  • Campisi A, Gulino M, Acquaviva R, Bellia P, Raciti G, Grasso R, Musumeci F, Vanella A, Triglia A (2010) Reactive oxygen species levels and DNA fragmentation on astrocytes in primary culture after acute exposure to low intensity microwave electromagnetic Field. Neurosci Lett 473:52–55

    Article  CAS  PubMed  Google Scholar 

  • Castillo-Olivares AD, Castro IN, Medina MA (2000) Dual role of plasma membrane electron transport systems in defense. Crit Rev Biochem Mol Biol 35:197–220

    Article  PubMed  Google Scholar 

  • Cerqueira FM, Gennari MH, Augusto O (2007) Dietary antioxidants: controversies and perspectives. Quim Nova 30:441–449

    Article  CAS  Google Scholar 

  • Céspedes O, Ueno S (2009) Effects of radio frequency magnetic fields on iron release from cage proteins. Bioelectromagnetics 30:336–342

    Article  PubMed  CAS  Google Scholar 

  • Chehen Y, Millew A, Grisham MB (1995) Pathophysiology and oxygen metabolites. In: Ahmad S (ed) Oxidative stress and antioxidant defenses in biology. Chapmen and Hall, New York, pp 238–272

    Google Scholar 

  • Cooke MS, Evans MD (2005) Reative oxygen species from DNA damage to disease. Sci Med 10:98–111

    Google Scholar 

  • D’Andrea JA, Chou CK, Johnston SA, Adair ER (2003) Microwave effects on the nervous system. Bioelectromagnetics 6:S107–SS47

    Article  PubMed  Google Scholar 

  • Darley-Usmar VM, Mason WC, Hogg N, Kalyanaraman B (1995) Lipid peroxidation and cardiovascular disease. In: Blake D, Winyard PG (eds) Immunopharmacology of free radical specie. Academic Press, London, pp 23–38

    Chapter  Google Scholar 

  • Dean RT, Fu S, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324:1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deneke SM, Fanburg BL (1989) Regulation of cellular glutatione. Am J Phys 257:L163–LL73

    CAS  Google Scholar 

  • Desai NR, Kesari KK, Agarwal A (2009) Pathophysiology of cell phone radiation: oxidative stress and carcinogenesis with focus on male reproductive system. Reprod Biol Endocrinol 7:114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Di Mascio P, Murphy MM, Sies H (1991) Antioxidant defense sytems: the role of carotenoids, tocophenols, and thiols. Am J Clin Nutr 53:194–200

    Google Scholar 

  • Dindic B, Sokolovic D, Krstic D, Petkovic D, Jovanovic J, Muratovic M (2010) Biochemical and histopathological effects of mobile phone exposure on rat hepatocytes and brain. Acta Med Medianae 49:37–41

    Google Scholar 

  • Djordjevic B, Sokolovic D, Kocic G, Veljkovic A, Despotovic M, Basic J, Jevtovic-Stoimenov T, Sokolovic DM (2015) Bratisl Lek Listy 116:96–100

    CAS  PubMed  Google Scholar 

  • Eblem A (2011) Non-ionizing radiation: concepts, applications and risks. In: Engineering course safety. http://www.prorad.com.br/cursos/Cursos/rni.pdf. Accessed 4 Sep 2015

  • Elhag MA, Nabil GM, Attia AMM (2007) Effects of electromagnetic field produced by mobile phones on the oxidant and antioxidant status of rats. Pak J Biol Sci 10:84–84

    Article  Google Scholar 

  • Ferreira ALA, Matsubara LS (1997) Free radicals: concepts, related diseases, defense system and oxidative stress. Rev Assoc Med Bras 43:61–68

    CAS  PubMed  Google Scholar 

  • Ferreira RA, Knakievicz T, Pasquali MAB, Gelain DP, Dal-Pizzol F, Fernández CER, Salles AAA, Ferreira HB, Moreira JCF (2006) Ultra high frequency-electromagnetic field irradiation during pregnancy leads to increase in erythrocytes micronuclei incidence in rat offspring. Life Sci 80:43–50

    Article  CAS  PubMed  Google Scholar 

  • Figura OL, Teixeira AA (2007) Food Physics. Physical properties: measurement and applications, 1st edn. Springer, New York

    Google Scholar 

  • Fridovich I (1998) Oxygen toxicity: a radical explanation. J Exp Biol 201:1203–1209

    CAS  PubMed  Google Scholar 

  • Friedman J, Kraus S, Hauptman Y, Schiff Y, Seger R (2007) Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem J 405:559–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furtado-Filho OV, Borba JB, Dallegrave A, Pizzolato TM,Henriques JAP, Moreira JCF, Saffi J (2014) Effect of 950 MHz UHF electromagnetic radiation on biomarkers of oxidative damage, metabolism of UFA and antioxidants in the livers of young rats of different ages. Int J Radiat Biol 90:159–168

    Google Scholar 

  • Galleano M, Puntarulo S (1995) Role of antioxidants on the erythrcytes resistence to lipid peroxidation after acute iron overloads in rats. Biochim Biophys Acta 1271:321–326

    Article  PubMed  Google Scholar 

  • Gibbs PNB, Gore MG, Jordan PM (1985) Investigation of the effect of metal ions on the reactivity of thiol groups in humans: aminolevulinate dehydratase. Biochem J 225:573–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall G (2008) Maxwell’s electromagnetic theory and special relativity. Philos Trans R Soc 366:1849–1860

    Article  CAS  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radical in biology and medicine, 4th edn. New York, Oxford

    Google Scholar 

  • Hassan N, Raafat BM, Aziz WA (2010) Modulator role of grape seed extract on erythrocyte hemolysis and oxidative stress induced by microwave irradiation in rats. Int J Integr Biol 10:106–111

    Google Scholar 

  • Hermes-Lima M, Willmore WG, Storey KB (1995) Quantification of peroxidation in tissue extracts based on Fe (III) xylenol orange complex formation. Free Radic Biol Med 19:271–280

    Article  CAS  PubMed  Google Scholar 

  • Hermes-Lima M, Storey JM, Storey KB (1998) Antioxidant defenses and metabolic depression. The hypothesis of preparation for oxidative stress in land snails. Comp Biochem Physiol B 120:437–448

    Article  CAS  PubMed  Google Scholar 

  • Hermes-Lima M, Storey JM, Storey KB (2001) Antioxidant defenses and animal adaptation to oxygen availability during environmental stress. In: Storey KB, Storey JM (eds) Cell and molecular response to stress. Elsevier press, Amsterdam, pp 263–287

    Google Scholar 

  • Hermes-Lima M, Ramos-Vasconcelos GR, Cardoso LA, Orr AL, Rivera PM, Drew KL (2004) Animal adaptability to oxidative stress: gastropod estivation and mammalian hibernation. In: Barnes BM, Carey HV (eds) Life in the cold: evolution, mechanisms, adaptation, and applications – thelfth international Hibernation symposium, Biological Papers of University of Alaska. Institute of Arctic Bioogy, University of Alaska Fairbanks, Fairbanks, pp 585–593

    Google Scholar 

  • Hershko A, Ciechanover A (1992) The ubiquitin system for protein degradation. Annu. Rev Biochem 61:761–807

    Article  CAS  PubMed  Google Scholar 

  • Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation purview and parameters. Nat Rev Mol Cell Biol 6:150–166

    Article  CAS  PubMed  Google Scholar 

  • Irmak MK, Fadilhoglu E, Güleç M, Erdogan H, Yagmurca M, Akyol Ö (2002) Effects of electromagnetic radiation from a cellular telephone on the oxidant and antioxidant levels in rabbits. Cell Biochem Funct 20:279–283

    Article  CAS  PubMed  Google Scholar 

  • Ischiropoulos H (1992) From physiology to pathology: maintenance of the critical balance by antioxidants. Arch Biochem Biophys 298:431–437

    Article  CAS  PubMed  Google Scholar 

  • Júnior MFV, Martin MI (2006) Measurement of non-ionizing radiation in the cities of São Jose dos Campos-SP and Taubaté (in Portuguese). Annals the 12th Meeting of Undergraduate Research and Graduate of ITA – ENCITA XII, Brazil

    Google Scholar 

  • Kaul N, Siveski-Iliskovic N, Hill M, Slezak J, Sinfal PK (1993) Free radical and the heart. J Pharmacol Toxicol Methods 30:55–67

    Article  CAS  PubMed  Google Scholar 

  • Kesari KK, Behari J (2008) Whole body 900 MHz radiation exposure effect on enzyme activity in male wistar rats. In: Proceedings of the XXIXth URSI (International Union of Radio Science) General Assembly, Chicago, IL, USA, 7–16

    Google Scholar 

  • Kesari KK, Behari J (2009) Fifty-gigahertz microwave exposure effect of radiations on rat brain. Appl Biochem Biotechnol 158:126–139

    Article  CAS  PubMed  Google Scholar 

  • Kiliçalp D, Dede S, Deger Y, Aslan L (2009) Effects of green tea on mineral levels of liver and testis of Guinea Pigs electromagnetic field emitted by mobil phones. Asian J Anim Vet Adv 4:86–92

    Article  Google Scholar 

  • Kleinveld HA, Swaak AJG, Koster JF (1989) Interactions between oxygen free radicals and proteins. Scand J Rheumatol 18:341–352

    Article  CAS  PubMed  Google Scholar 

  • Koppenol WH (2001) The Haber-Weiss cycle – 70 years later. Redox Rep 6:229–234

    Article  CAS  PubMed  Google Scholar 

  • Köylü H, Naziroglu M, Delibas N (2006) Melatonin modulates 900 MHz microwave-induced lipid peroxidation change in rat brain. Toxicol Ind Health 22:211–216

    Article  PubMed  Google Scholar 

  • Kristal BS, Yu BP (1992) An emerging hypotesis: synergistic induction of aging by free radicals and Maillard reactions. J Gerontol 47:B107–BB14

    Article  CAS  PubMed  Google Scholar 

  • Lenaz G (2012) Mitochondria and reactive oxygen species. Which role in physiology and pathology? Adv Exp Med Biol 942:93–136

    Article  CAS  PubMed  Google Scholar 

  • Levine RL (1993) Ischemia: from acidosis to oxidation. FASEB J 7:1242–1246

    CAS  PubMed  Google Scholar 

  • Mackul’Ak T, Prousek J, Švorc L (2011) Degradation of atrazine by Fenton and modified Fenton reactions. Monatsh Chem 142:561–567

    Article  CAS  Google Scholar 

  • Madamanchi NR, Vendrov A, Runge MS (2005) Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 25:29–38

    Article  CAS  PubMed  Google Scholar 

  • Mailankot M, Kunnath AP, Jayaleksmi H, Koduru B, Valsalan R (2009) Radiofrequency electromagnetic radiation (RF_EMR) from GSM (0.9/1.8 GHz) mobile phones induces oxidative stress and reduces sperm motility in rat. Clinics 64:561–565

    Article  PubMed  PubMed Central  Google Scholar 

  • Marban E, Koretsune Y, Kusuoca H (1994) Disruption of intracellular Ca+2 homeostasis in hearts reperfused after prolonged episodes of ischaemia. In: Cellular, biochemical, and molecular aspects of reperfusion injury, vol 723. Annals of the New York Academy of Science, New York, pp 38–58

    Google Scholar 

  • Mccord JM, Day ED (1978) Superoxide-dependent production of hydroxyl catalyzed by iron-EDTA complex. FEBS Lett 86:139–142

    Article  CAS  PubMed  Google Scholar 

  • Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  CAS  PubMed  Google Scholar 

  • Meral I, Mert H, Mert N, Dejer Y, Yoruk I, Yetkin A, Keskin S (2007) Effects of 900 MHz electromagnetic Field emitted from cellular phone on brain oxidative stress and some. Brain Res 1169:120–124

    Article  CAS  PubMed  Google Scholar 

  • Moulder JB (2000) Cellular antennas (base station) and human health (in Portuguese). http://www.radiacao.com.br/traducaocelular.html. Acessed 21 Aug 2016

  • Moussa AS (2009) Oxidative stress in rats exposed to microwave radiation. Rom J Biophys 19:149–158

    CAS  Google Scholar 

  • Moustafa YM, Moustafa RM, Belacy A, Abou-El-Ela SH, Ali FM (2001) Effects of acute exposure to the radiofrequency fields of phones on plasma lipid peroxide and antioxidase activities in human erythrocytes. J Pharm Biomed Anal 26:605–608

    Article  CAS  PubMed  Google Scholar 

  • Nageswara RM, Vendrov A, Runge MS (2005) Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 25:29–38

    Google Scholar 

  • Oktem F, Ozguner F, Mollaoglu H, Koyu A, Uz E (2005) Oxidative damage in the kidney induced by 900-MHz-emitted mobile phone: protection by melatonin. Arch Med Res 36:350–355

    Article  CAS  PubMed  Google Scholar 

  • Olgar Y, Hidisoglu E, Celen MC, Yamasan BE, Yargicoglu P, Ozdemir S (2015) 2.1 GHz electromagnetic field does not change contractility and intracellular Ca2+ transients but decreases β-adrenergic responsiveness through nitric oxide signaling in rat ventricular myocytes. Int J Radiat Biol 91:851–857

    Article  PubMed  CAS  Google Scholar 

  • Ozguner F, Altinbas A, Ozaydin M, Dogan A, Vural H, Kisioglu AN, Cesur G, Yildirim NG (2005) Mobile phone-induced myocardial oxidative stress: protection by a novel antioxidant agent caffeic acid phenethyl ester. Toxicol Ind Health 21:223–230

    Article  CAS  PubMed  Google Scholar 

  • Ozgur E, Güler G, Seyhan N (2007) Regenerative effects of (−)-epigallocatechin-gallate against hepatic oxidative stress resulted by mobile phone exposure. IFMBE Proc 16:214–217

    Article  Google Scholar 

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulraj R, Behari J (2006) Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutat Res 596:76–80

    Article  CAS  PubMed  Google Scholar 

  • Peng T, Lu X, Feng Q (2005) NADH oxidase signaling induces cyclooxygenase-2 expression during lipopolysaccharide stimulation in cardiomyocytes. FASEB J 19:293–295

    CAS  PubMed  Google Scholar 

  • Peters JM (1994) Proteasomes: protein degradation machines of the cell. Trends Biochem Sci 19:377–382

    Article  CAS  PubMed  Google Scholar 

  • Phillips JL, Singh NP, Lai H (2009) Electromagnetic fields and DNA damage. Pathophysiology 16:79–88

    Article  CAS  PubMed  Google Scholar 

  • Piotr DP, Murawska-Ciałowicz E, Jethon Z, Januszewska L, Podhorska-Okołów M, Surowiak P, Zawadzki M, Rabczyński J, Zabel M (2003) Melatonin stimulates the activity of protective antioxidative enzymes in myocardial cells of rats in the course of doxorubicin intoxication. J Pineal Res 35:183–187

    Article  Google Scholar 

  • Powell SR (2000) The antioxidant properties of zinc. J Nutr 30:1447–1454

    Google Scholar 

  • Praputpittaya C, Pleumsamran J, Duangjai A (2008) Electromagnetic radiation from mobile phone causes no oxidative stress to the brain. Asian Biomed 2:507–510

    Google Scholar 

  • Ragy MM (2015) Effect of exposure and withdrawal of 900-MHz-electromagnetic waves on brain, kidney and liver oxidative stress and some biochemical parameters in male rats. Electromagn Biol Med 34:279–284

    Article  CAS  PubMed  Google Scholar 

  • Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosales MAB (2014) Stress nitrosative in the pathogenesis of diabetic retinopathy. Implications blood-retinal barrier external and possible therapeutic targets (in Portuguese). Doctoral thesis. UNICAMP, Brazil

    Google Scholar 

  • Saffi J, Henriques JAP (2003) Repair of DNA in eukaryotic cells. In: Da Silva J, Erdtmann B, Henriques JAP (eds) Genetic toxicology. Alcance, Porto Alegre, pp 271–305

    Google Scholar 

  • Sahin D, Ozgur E, Guler G, Tomruk A, Unlu I, Sepici-Dinçel A, Seyhan N (2016) The 2100 MHz radiofrequency radiation of a 3G-mobile phone and the DNA oxidative damage in brain. J Chem Neuroanat 75:94–98

    Article  CAS  PubMed  Google Scholar 

  • Santos NCF (1998) Quantification of antioxidant activity of isonicotinoil pyridoxal hydrazone (PIH) against oxidative stress induced by iron ions. Dissertation, University of Brasilia, Brasilia, Brazil

    Google Scholar 

  • Sengupta DL, Sarkar TK (2003) Maxwell, Hertz the Maxwellians, and the early history of electromagnetic waves. IEEE Antennas Propag Mag 45:13–19

    Article  Google Scholar 

  • Shan X, Aw TY, Jones DP (1990) Glutathione-dependent protection against oxidative. Injury Pharmacol 47:61–71

    CAS  Google Scholar 

  • Sies H (1993) Strategies of antioxidants defense. Eur J Biochem 215:213–219

    Article  CAS  PubMed  Google Scholar 

  • Silva DF, Barros WR, Almeida MD, Rego MA (2015) Exposure to non-ionizing electromagnetic radiation from mobile telephony and the association with psychiatric symptoms. Cad Saude Publica 31:2110–2126

    Article  PubMed  Google Scholar 

  • Simko M, Hartwig C, Lantow M, Lupke M, Mattsson MO, Rahman Q (2006) Hsp 70 expression and free radical release after exposure to non-thermal radio-frequency electromagnetic fields and ultrafine particles in human Mono Mac 6 cells. Toxicol Lett 161:73–82

    Article  CAS  PubMed  Google Scholar 

  • Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction and aging. Science 273:59–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokolovic D, Djindjic B, Nikolic J, Bjelakovic G, Pavlovic D, Kocic G, Krstic D, Cvetkovic T, Pavlovic V (2008) Melatonin reduces oxidative stress induced by chronic exposure of microwave radiation from mobile phones in rat brain. J Radiat Res 49:579–586

    Article  CAS  PubMed  Google Scholar 

  • Stadman ER (1992) Protein oxidation and aging. Science 257:1220–1224

    Article  Google Scholar 

  • Stadman ER, Levine RL (2000) Protein oxidation. Ann N Y Acad Sci 899:191–201

    Article  Google Scholar 

  • Tomruk A, Guler G, Dincel AS (2010) The influence of 1800 MHz GSM-like signals on hepatic oxidative DNA and lipid damage in nonpregnant, pregnant, and newly born rabbits. Cell Biochem Biophys 56:39–47

    Article  CAS  PubMed  Google Scholar 

  • Türker Y, Naziroglu M, Gümral N, Çelik Ö, Saygin M, Çömlekçi S, Flores-Arce M (2011) Selenium and L-carnitine reduce oxidative stress in the heart of rat induced by 2.45-GHz radiation from wireless devices. Biol Trace Elem Res 143:1640–1650

    Article  PubMed  CAS  Google Scholar 

  • Ushio-Fukai M (2006) Localizing NADPH oxidase–derived ROS. Sci STKE re8:1–6

    Google Scholar 

  • Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaca CE, Wilhelm J, Harms-Ringdahl M (1988) Interaction of lipid peroxidation products with DNA. Mutat Res 195:137–149

    Article  CAS  PubMed  Google Scholar 

  • Vainshtein BK, Melik-Adamyan WR, Barynin VV, Vagin AA, Grebenko AI (1981) Three-dimensional structure of the enzyme catalase. Nature 293:411–412

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell B 39:4–84

    Article  CAS  Google Scholar 

  • Vasconcelos SML, Goulart MOF, Moura JBF, Manfredini V, Benfato MS, Kubota LT (2007) Reactive oxygen species and nitrogen, antioxidants anddamage markers oxidative in human blood: key analytical methods for its determination (in Portuguese). Quim Nova 30:1323–1338

    Article  CAS  Google Scholar 

  • Verschaeve L, Maes A (1998) Genetic, carcinogenic and teratogenic effects of radiofrequency fields. Mutat Res 410:141–165

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz A, Tumkaya L, Akyildiz KA, Kalkan Y, Bodur AF, Sargin F, Efe H, Uydu HA, Yazici ZA (2016) Lasting hepatotoxic effects of prenatal mobile phone exposure. J Matern Fetal Neonatal Med 17:1–14

    Google Scholar 

  • Yurekli AI, Ozkan M, Kalkan T, Saybasili H, Tuncel H, Atukeren P, Gumustas K, Seker S (2006) GSM base station electromagnetic radiation antioxidative stress in rats. Electromag Biol Med 25:177–188

    Article  CAS  Google Scholar 

  • Zmyslony M, Politanski P, Rajkowsk E, Szymczak W, Jajte J (2004) Acute exposure to 930 MHz CW electromagnetic radiation in vitro affects reactive oxygen species level in rat lymphocytes treated by iron ions. Bioelectromagnetics 25:325–328

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orlando Vieira Furtado-Filho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Furtado-Filho, O.V. (2017). Ultra-High-Frequency Electromagnetic Radiation and Reactive Species in Mammals. In: Geddes, C. (eds) Microwave Effects on DNA and Proteins. Springer, Cham. https://doi.org/10.1007/978-3-319-50289-2_7

Download citation

Publish with us

Policies and ethics