Skip to main content

On Optimal Extended Row Distance Profile

  • Conference paper
  • First Online:
Applied and Computational Matrix Analysis (MAT-TRIAD 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 192))

Included in the following conference series:

  • 1138 Accesses

Abstract

In this paper, we investigate extended row distances of Unit Memory (UM) convolutional codes . In particular, we derive upper and lower bounds for these distances and moreover present a concrete construction of a UM convolutional code that almost achieves the derived upper bounds. The generator matrix of these codes is built by means of a particular class of matrices, called superregular matrices . We actually conjecture that the construction presented is optimal with respect to the extended row distances as it achieves the maximum extended row distances possible. This in particular implies that the upper bound derived is not completely tight. The results presented in this paper further develop the line of research devoted to the distance properties of convolutional codes which has been mainly focused on the notions of free distance and column distance. Some open problems are left for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Therefore, the degree \(\delta \) of a convolutional code \({\mathscr {C}}\) is the sum of the row degrees of one, and hence any, minimal basic encoder.

References

  1. Aidinyan, A.K.: On matrices with nondegenerate square submatrices. Probl. Peredachi Inf. 22(4), 106–108 (1986)

    MathSciNet  Google Scholar 

  2. Almeida, P., Napp, D., Pinto, R.: A new class of superregular matrices and MDP convolutional codes. Linear Algebra Appl. 439(7), 2145–2157 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Almeida, P., Napp, D., Pinto, R.: Superregular matrices and applications to convolutional codes. Linear Algebra Appl. 499, 1–25 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Forney Jr., G.D.: Convolutional codes I: algebraic structure. IEEE Trans. Inf. Theory IT–16(5), 720–738 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  5. Forney Jr., G.D.: Structural analysis of convolutional codes via dual codes. IEEE Trans. Inf. Theory IT–19(5), 512–518 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Forney Jr., G.D.: Convolutional codes II: maximum likelihood decoding. Inf. Control 25, 222–266 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gluesing-Luerssen, H., Rosenthal, J., Smarandache, R.: Strongly MDS convolutional codes. IEEE Trans. Inf. Theory 52(2), 584–598 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hutchinson, R., Rosenthal, J., Smarandache, R.: Convolutional codes with maximum distance profile. Syst. Control Lett. 54(1), 53–63 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hutchinson, R.: The existence of strongly MDS convolutional codes. SIAM J. Control Optim. 47(6), 2812–2826 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hutchinson, R., Smarandache, R., Trumpf, J.: On superregular matrices and MDP convolutional codes. Linear Algebra Appl. 428, 2585–2596 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Johannesson, R., Zigangirov, K.Sh.: Fundamentals of Convolutional Coding. IEEE Press, New York (1999)

    Google Scholar 

  12. Justesen, J., Paaske, E., Ballan, M.: Quasi-cyclic unit memory convolutional codes. IEEE Trans. Inf. Theory IT–36(3), 540–547 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lauer, G.S.: Some optimal partial unit-memory codes. IEEE Trans. Inf. Theory 25, 240–243 (1979)

    Article  MATH  Google Scholar 

  14. Lee, L.N.: Short unit-memory byte-oriented binary convolutional codes having maximal free distance. IEEE Trans. Inf. Theory IT–22, 349–352 (1976)

    MathSciNet  MATH  Google Scholar 

  15. Mahmood, R., Badr, A., Khisti, A.: Convolutional codes in rank metric for network streaming. in IEEE Int. Symp. Inf. Theory (ISIT) (2015)

    Google Scholar 

  16. McEliece, R. J.: The algebraic theory of convolutional codes. In: Handbook of Coding Theory, vol. 1, pp. 1065–1138. Elsevier, Amsterdam (1998)

    Google Scholar 

  17. Napp, D., Smarandache, R.: Constructing strongly MDS convolutional codes with maximum distance profile. Advances in Mathematics of Communications (to appear)

    Google Scholar 

  18. El Oued, M., Sole, P.: MDS convolutional codes over a finite ring. IEEE Trans. Inf. Theory 59(11), 7305–7313 (2013)

    Article  MathSciNet  Google Scholar 

  19. Rosenthal, J., Schumacher, J. M., York, E. V.: On behaviors and convolutional codes. IEEE Trans. Autom. Control 42(6, part 1), 1881–1891 (1996)

    Google Scholar 

  20. Rosenthal, J., Smarandache, R.: Maximum distance separable convolutional codes. Appl. Algebra Eng. Commun. Comput. 1(10), 15–32 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Roth, R.M., Seroussi, G.: On generator matrices of MDS codes. IEEE Trans. Inf. Theory 31(6), 826–830 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. Roth, R.M., Lempel, A.: On MDS codes via Cauchy matrices. IEEE Trans. Inf. Theory 35(6), 1314–1319 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Smarandache, R., Gluesing-Luerssen, H., Rosenthal, J.: Constructions for MDS-convolutional codes. IEEE Trans. Autom. Control 47(5), 2045–2049 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Thommesen, C., Justesen, J.: Bounds on distances and error exponents of unit memory codes. IEEE Trans. Inf. Theory IT–29(5), 637–649 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tomás, V.: Complete-MDP convolutional codes over the Erasure Channel. Ph.D. thesis, Departamento de Ciencia de la Computación e Inteligencia Artificial, Universidad de Alicante, España (2010)

    Google Scholar 

  26. Tomás, V., Rosenthal, J., Smarandache, R.: Decoding of MDP convolutional codes over the erasure channel. In: Proceedings of the 2009 IEEE International Symposium on Information Theory (ISIT 2009), Seoul, Korea, pp. 556–560 (2009)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewer for his/her comments that led to improve the quality of the final version. This work was supported by Portuguese funds through the CIDMA - Center for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology (FCT-Fundação para a Ciência e a Tecnologia), within project PEst-UID/MAT/04106/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Napp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Almeida, P., Napp, D., Pinto, R. (2017). On Optimal Extended Row Distance Profile. In: Bebiano, N. (eds) Applied and Computational Matrix Analysis. MAT-TRIAD 2015. Springer Proceedings in Mathematics & Statistics, vol 192. Springer, Cham. https://doi.org/10.1007/978-3-319-49984-0_4

Download citation

Publish with us

Policies and ethics