Skip to main content

Focal Therapy and Active Surveillance in Europe

  • Chapter
  • First Online:
Imaging and Focal Therapy of Early Prostate Cancer

Part of the book series: Current Clinical Urology ((CCU))

  • 975 Accesses

Abstract

Prostate cancer (PCa) is one of the most commonly diagnosed cancers in European men, and its management is highly complex. This is especially true for localized and low-risk disease owing to the many factors that influence decision-making, including the wide range of available interventions, each of which is associated with different treatment characteristics and adverse effects. Furthermore, there are still many uncertainties regarding the most accurate ways of determining the grade and stage of disease and evaluating the prognosis. Approximately 20–50 % of men diagnosed with low-risk disease harbor high-grade PCa that is misclassified in biopsy. In addition, a small number of low-grade PCa have molecular alterations resulting in progression to unfavorable disease. Low-risk PCa may be managed by controlled and regular follow-up (active surveillance).

In turn, more and more interest is rising around the possibility of treating the part of the prostate containing the obvious cancer (focal therapy). The concept of treating an index lesion in the prostate to control PCa is of increasing interest to European urologists and oncologists. The goals of focal therapy itself are commendable, namely, reducing the morbidity of treatment while ensuring at least equivalent oncological outcomes compared with established interventions for localized PCa such as radical prostatectomy (RP) and external beam radiation therapy. However, concerns exist about the validity of the index lesion theory, the ablative technologies being used to deliver FT, and the design of recent and current studies evaluating FT for localized PCa. Focal therapy aims to preserve tissue and function in men who have been diagnosed with localized PCa, as an alternative to whole-gland radiation or RP. Furthermore, there is growing interest in the use of FT to reduce treatment-related toxicity, minimizing damage to the adjacent structures. Currently, any approach able to preserve part of the prostatic tissue (hockey-stick ablation, hemi-ablation, and focal ablation) is considered focal therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer. 2010;46:765–81. doi:10.1016/j.ejca.2009.12.014.

    Article  CAS  PubMed  Google Scholar 

  2. Karim-Kos HE, de Vries E, Soerjomataram I, et al. Recent trends of cancer in Europe: a combined approach of incidence, survival and mortality for 17 cancer sites since the 1990s. Eur J Cancer. 2008;44:1345–89.

    Article  PubMed  Google Scholar 

  3. Klotz L, Emberton M. Management of low risk prostate cancer-active surveillance and focal therapy. Nat Rev Clin Oncol. 2014;11:324–34. doi:10.1038/nrclinonc.2014.73.

    Article  PubMed  Google Scholar 

  4. van den Bergh RCN, Roemeling S, Roobol MJ, et al. Prospective validation of active surveillance in prostate cancer: the PRIAS Study. Eur Urol. 2007;52:1560–3. doi:10.1016/j.eururo.2007.05.011.

    Article  PubMed  Google Scholar 

  5. Bokhorst LP, Alberts AR, Rannikko A, et al. Compliance rates with the Prostate Cancer Research International Active Surveillance (PRIAS) protocol and disease reclassification in noncompliers. Eur Urol. 2015;68:814–21. doi:10.1016/j.eururo.2015.06.012.

    Article  PubMed  Google Scholar 

  6. Valerio M, Anele C, Freeman A, et al. Identifying the index lesion with template prostate mapping biopsies. J Urol. 2014;193:1185–90. doi:10.1016/j.juro.2014.11.015.

    Article  PubMed  Google Scholar 

  7. Ahmed HU, Hu Y, Carter T, et al. Characterizing clinically significant prostate cancer using template prostate mapping biopsy. J Urol. 2011;186:458–64. doi:10.1016/j.juro.2011.03.147.

    Article  PubMed  Google Scholar 

  8. Ahmed HU, Emberton M. Active surveillance and radical therapy in prostate cancer: can focal therapy offer the middle way? World J Urol. 2008;26:457–67. doi:10.1007/s00345-008-0317-5.

    Article  PubMed  Google Scholar 

  9. Heidenreich A, Bastian PJ, Bellmunt J, et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol. 2014;65:124–37. doi:10.1016/j.eururo.2013.09.046.

    Article  PubMed  Google Scholar 

  10. van As NJ, Norman AR, Thomas K, et al. Predicting the probability of deferred radical treatment for localised prostate cancer managed by active surveillance. Eur Urol. 2008;54:1297–305. doi:10.1016/j.eururo.2008.02.039.

    Article  PubMed  Google Scholar 

  11. Arnsrud Godtman R, Holmberg E, Khatami A, et al. Outcome following active surveillance of men with goteborg screen-detected prostate cancer. Results from the go randomised population-based prostate cancer screening trial. Eur Urol. 2013;63:101–7.

    Article  Google Scholar 

  12. Epstein JI, Walsh PC, Carmichael M, Brendler CB. Pathologic and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer. JAMA. 1994;271:368–74. doi:10.1001/jama.271.5.368.

    Article  CAS  PubMed  Google Scholar 

  13. Bastian PJ, Mangold LA, Epstein JI, Partin AW. Characteristics of insignificant clinical T1c prostate tumors: a contemporary analysis. Cancer. 2004;101:2001–5. doi:10.1002/cncr.20586.

    Article  PubMed  Google Scholar 

  14. Dall’Era MA, Albertsen PC, Bangma C, et al. Active surveillance for prostate cancer: a systematic review of the literature. Eur Urol. 2012;62:976–83. doi:10.1016/j.eururo.2012.05.072.

    Article  PubMed  Google Scholar 

  15. Ploussard G, Isbarn H, Briganti A, et al. (2015) Can we expand active surveillance criteria to include biopsy Gleason 3+4 prostate cancer? A multi-institutional study of 2323 patients. Urol Oncol Semin Orig Investig 33:71.e1–71.e9. doi:10.1016/j.urolonc.2014.07.007.

  16. Ng MK, Van As N, Thomas K, et al. Prostate-specific antigen (PSA) kinetics in untreated, localized prostate cancer: PSA velocity vs PSA doubling time. BJU Int. 2009;103:872–6. doi:10.1111/j.1464-410X.2008.08116.x.

    Article  CAS  PubMed  Google Scholar 

  17. Van Den Bergh RCN, Roemeling S, Roobol MJ, et al. Gleason score 7 screen-detected prostate cancers initially managed expectantly: outcomes in 50 men. BJU Int. 2009;103:1472–7. doi:10.1111/j.1464-410X.2008.08281.x.

    Article  PubMed  Google Scholar 

  18. Shaw GL, Thomas BC, Dawson SN, et al. (2014) Identification of pathologically insignificant prostate cancer is not accurate in unscreened men. Br Cournal Cancer. 110. doi:10.1038/bjc.2014.192.

  19. Suardi N, Briganti A, Gallina A, et al. Testing the most stringent criteria for selection of candidates for active surveillance in patients with low-risk prostate cancer. BJU Int. 2010;105:1548–52. doi:10.1111/j.1464-410X.2009.09057.x.

    Article  PubMed  Google Scholar 

  20. Radtke JP, Kuru TH, Bonekamp D, et al. (2016). Further reduction of disqualification rates by additional MRI-targeted biopsy with transperineal saturation biopsy compared to standard 12-core systematic biopsies for selection of prostate cancer patients for active surveillance. Prostate Cancer Prostatic Dis. 2016 Sep;19(3):283–91. doi:10.1038/pcan.2016.16. Epub 2016 May 17.

  21. Siddiqui MM, Rais-Bahrami S, Turkbey B, et al. Comparison of MR/ultrasound fusion–guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA. 2015;313:390. doi:10.1001/jama.2014.17942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baco E, Ukimura O, Rud E, et al. magnetic resonance imaging – transrectal ultrasound image-fusion biopsies accurately characterize the index tumor: correlation with step-sectioned radical prostatectomy specimens in 135 patients. Eur Urol. 2015;67:787–94. doi:10.1016/j.eururo.2014.08.077.

    Article  PubMed  Google Scholar 

  23. Radtke JP, Schwab C, Wolf MB, et al. Multiparametric magnetic resonance imaging (MRI) and MRI – transrectal ultrasound fusion biopsy for index tumor detection: correlation with radical prostatectomy specimen. Eur Urol. 2016:6–13. doi:10.1016/j.eururo.2015.12.052.

  24. Epstein JI, Walsh PC, Carter HB. Dedifferentiation of prostate cancer grade with time in men followed expectantly for stage T1c disease. J Urol. 2001;166:1688–91.

    Article  CAS  PubMed  Google Scholar 

  25. Soloway MS, Soloway CT, Eldefrawy A, et al. Careful selection and close monitoring of low-risk prostate cancer patients on active surveillance minimizes the need for treatment. Eur Urol. 2010;58:831–5. doi:10.1016/j.eururo.2010.08.027.

    Article  PubMed  Google Scholar 

  26. Ouzzane A, Renard-Penna R, Marliere F, et al. MRI-targeted biopsy improves selection of patients considered for active surveillance for clinically low-risk prostate cancer based on systematic biopsies. J Urol. 2015; doi:10.1016/j.juro.2015.02.2938.

    PubMed  Google Scholar 

  27. Marliere F, Puech P, Benkirane A, et al. The role of MRI-targeted and confirmatory biopsies for cancer upstaging at selection in patients considered for active surveillance for clinically low-risk prostate cancer. World J Urol. 2014;32:951–8. doi:10.1007/s00345-014-1314-5.

    Article  PubMed  Google Scholar 

  28. Bul M, Van Den Bergh RCN, Rannikko A, et al. Predictors of unfavourable repeat biopsy results in men participating in a prospective active surveillance program. Eur Urol. 2012;61:370–7. doi:10.1016/j.eururo.2011.06.027.

    Article  PubMed  Google Scholar 

  29. Schoots IG, Petrides N, Giganti F, et al. Magnetic resonance imaging in active surveillance of prostate cancer: a systematic review. Eur Urol. 2014:67–73. doi:10.1016/j.eururo.2014.10.050.

  30. Tosoian JJ, JohnBull E, Trock BJ, et al. Pathological outcomes in men with low risk and very low risk prostate cancer: implications on the practice of active surveillance. J Urol. 2013;190:1218–22. doi:10.1016/j.juro.2013.04.071.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tosoian JJ, Loeb S, Feng Z, et al. Association of [−2]proPSA with biopsy reclassification during active surveillance for prostate cancer. J Urol. 2012;188:1131–6. doi:10.1016/j.juro.2012.06.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Makarov DV, Isharwal S, Sokoll L, et al. Pro-prostate-specific anti- gen measurements in serum and tissue are associated with treatment necessity among men enrolled in expectant management for prostate cancer. Clin Cancer Res. 2009;15:7316–21. Clin Cancer Res 15:7316–7321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Khan MA, Carter HB, Epstein JI, et al. Can prostate specific antigen derivatives and pathological parameters predict significant change in expectant management criteria for prostate cancer? J Urol. 2003;170:2274–8. doi:10.1097/01.ju.0000097124.21878.6b.

    Article  PubMed  Google Scholar 

  34. Castro E, Goh C, Olmos D, et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol. 2013;31:1748–57. doi:10.1200/JCO.2012.43.1882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bancroft EK, Page EC, Castro E, et al. Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers: Results from the initial screening round of the IMPACT study. Eur Urol. 2014;66:489–99. doi:10.1016/j.eururo.2014.01.003.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Klein EA, Cooperberg MR, Magi-Galluzzi C, et al. A 17-gene assay to predict prostate cancer aggressiveness in the context of gleason grade heterogeneity, tumor multifocality, and biopsy undersampling. Eur Urol. 2014;66:550–60. doi:10.1016/j.eururo.2014.05.004.

    Article  PubMed  Google Scholar 

  37. Lees K, Durve M, Parker C. Active surveillance in prostate cancer: patient selection and triggers for intervention. Curr Opin Urol. 2012;22:210–5.

    Article  PubMed  Google Scholar 

  38. Van Den Bergh RCN, Ahmed HU, Bangma CH, et al. Novel tools to improve patient selection and monitoring on active surveillance for low-risk prostate cancer: a systematic review. Eur Urol. 2014;65:1023–31. doi:10.1016/j.eururo.2014.01.027.

    Article  PubMed  Google Scholar 

  39. Berg KD, Vainer B, Thomsen FB, et al. ERG protein expression in diagnostic specimens is associated with increased risk of progression during active surveillance for prostate cancer. Eur Urol. 2014;66:851–60. doi:10.1016/j.eururo.2014.02.058.

    Article  CAS  PubMed  Google Scholar 

  40. Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310:644–8. doi:10.1126/science.1117679.

    Article  CAS  PubMed  Google Scholar 

  41. Demichelis F, Fall K, Perner S, et al. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene. 2007;26:4596–9. doi:10.1038/sj.onc.1210630.

    Article  CAS  PubMed  Google Scholar 

  42. Lin DW, Newcomb LF, Brown EC, et al. Urinary TMPRSS2:ERG and PCA3 in an active surveillance cohort: results from a baseline analysis in the canary prostate active surveillance study. Clin Cancer Res. 2013;19:2442–50. doi:10.1158/1078-0432.CCR-12-3283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Leyten GHJM, Hessels D, Jannink SA, et al. Prospective multicentre evaluation of PCA3 and TMPRSS2-ERG gene fusions as diagnostic and prognostic urinary biomarkers for prostate cancer. Eur Urol. 2014;65:534–42. doi:10.1016/j.eururo.2012.11.014.

    Article  CAS  PubMed  Google Scholar 

  44. Ploussard G, Durand X, Xylinas E, et al. Prostate cancer antigen 3 score accurately predicts tumour volume and might help in selecting prostate cancer patients for active surveillance. Eur Urol. 2011;59:422–9. doi:10.1016/j.eururo.2010.11.044.

    Article  PubMed  Google Scholar 

  45. Loeb S, Bjurlin MA, Nicholson J, et al. Overdiagnosis and overtreatment of prostate cancer. Eur Urol. 2014;65:1046–55. doi:10.1016/j.eururo.2013.12.062.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shaw GL, Thomas BC, Dawson SN, et al. Identification of pathologically insignificant prostate cancer is not accurate in unscreened men. Br J Cancer. 2014;110:2405–11. doi:10.1038/bjc.2014.192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Epstein JI, Feng Z, Trock BJ, Pierorazio PM. Upgrading and downgrading of prostate cancer from biopsy to radical prostatectomy: Incidence and predictive factors using the modified gleason grading system and factoring in tertiary grades. Eur Urol. 2012;61:1019–24. doi:10.1016/j.eururo.2012.01.050.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Vargas HA, Akin O, Afaq A, et al. Magnetic resonance imaging for predicting prostate biopsy findings in patients considered for active surveillance of clinically low risk prostate cancer. J Urol. 2012;188:1732–8. doi:10.1016/j.juro.2012.07.024.

    Article  PubMed  Google Scholar 

  49. van den Bergh RCN, Roemeling S, Roobol MJ, et al. Outcomes of men with screen-detected prostate cancer eligible for active surveillance who were managed expectantly. Eur Urol. 2009;55:1–8. doi:10.1016/j.eururo.2008.09.007.

    Article  PubMed  Google Scholar 

  50. Hu JC, Chang E, Natarajan S, et al. Targeted prostate biopsy in select men for active surveillance: do the Epstein criteria still apply? J Urol. 2014;192:385–90. doi:10.1016/j.juro.2014.02.005.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mullins JK, Bonekamp D, Landis P, et al. Multiparametric magnetic resonance imaging findings in men with low-risk prostate cancer followed using active surveillance. BJU Int. 2013;111:1037–45. doi:10.1111/j.1464-410X.2012.11641.x.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Da Rosa MR, Milot L, Sugar L, et al. A prospective comparison of MRI-US fused targeted biopsy versus systematic ultrasound-guided biopsy for detecting clinically significant prostate cancer in patients on active surveillance. J Magn Reson Imaging. 2015;41:220–5. doi:10.1002/jmri.24710.

    Article  PubMed  Google Scholar 

  53. van As NJ, de Souza NM, Riches SF, et al. A study of diffusion-weighted magnetic resonance imaging in men with untreated localised prostate cancer on active surveillance. Eur Urol. 2009;56:981–8.

    Article  PubMed  Google Scholar 

  54. Somford DM, Hoeks CM, Hulsbergen-van de Kaa CA, et al. Evaluation of diffusion-weighted MR imaging at inclusion in an active surveillance protocol for low-risk prostate cancer. Invest Radiol. 2013;48:152–7. doi:10.1097/RLI.0b013e31827b711e.

    Article  PubMed  Google Scholar 

  55. Recabal P, Assel M, Sjoberg DD, et al. The efficacy of multiparametric magnetic resonance imaging and MRI-targeted biopsy in risk classification for patients with prostate cancer on active surveillance. J Urol. 2016; doi:10.1016/j.juro.2016.02.084.

    PubMed Central  Google Scholar 

  56. Van Den Bergh RCN, Vasarainen H, Van Der Poel HG, et al. Short-term outcomes of the prospective multicentre “Prostate Cancer Research International: Active Surveillance” study. BJU Int. 2010;105:956–62. doi:10.1111/j.1464-410X.2009.08887.x.

    Article  PubMed  Google Scholar 

  57. Bul M, Zhu X, Valdagni R, et al. Active surveillance for low-risk prostate cancer worldwide: the PRIAS study. Eur Urol. 2013;63:597–603. doi:10.1016/j.juro.2012.12.080.

    Article  PubMed  Google Scholar 

  58. Loeb S, van den Heuvel S, Zhu X, et al. Infectious complications and hospital admissions after prostate biopsy in a European randomized trial. Eur Urol. 2012;61:1110–4. doi:10.1016/j.eururo.2011.12.058.

    Article  PubMed  Google Scholar 

  59. Mkinen T, Auvinen A, Hakama M, et al. Acceptability and complications of prostate biopsy in population-based PSA screening versus routine clinical practice: a prospective, controlled study. Urology. 2002;60:846–50. doi:10.1016/S0090-4295(02)01864-2.

    Article  PubMed  Google Scholar 

  60. Bokhorst LP, Lepistö I, Kakehi Y, et al. Complications after prostate biopsies in men on active surveillance and its effect on receiving further biopsies in the Prostate cancer Research International: Active Surveillance (PRIAS) study. BJU Int. 2016; doi:10.1111/bju.13410.

    Google Scholar 

  61. Bangma CH, Bul M, van der Kwast TH, et al. Active surveillance for low-risk prostate cancer. Crit Rev Oncol Hematol. 2013;85:295–302. doi:10.1016/j.critrevonc.2012.07.005.

    Article  PubMed  Google Scholar 

  62. Schoots IG, Roobol MJ, Nieboer D, et al. Magnetic resonance imaging–targeted biopsy may enhance the diagnostic accuracy of significant prostate cancer detection compared to standard transrectal ultrasound-guided biopsy: a systematic review and meta-analysis. Eur Urol. 2014:1–13. doi:10.1016/j.eururo.2014.11.037.

  63. Bellardita L, Valdagni R, Van Den Bergh R, et al. How does active surveillance for prostate cancer affect quality of life? A systematic review. Eur Urol. 2015;67:637–45. doi:10.1016/j.eururo.2014.10.028.

    Article  PubMed  Google Scholar 

  64. van den Bergh RCN, Essink-Bot ML, Roobol MJ, et al. Do anxiety and distress increase during active surveillance for low risk prostate cancer? J Urol. 2010;183:1786–91. doi:10.1016/j.juro.2009.12.099.

    Article  PubMed  Google Scholar 

  65. Vasarainen H, Lokman U, Ruutu M, et al. Prostate cancer active surveillance and health-related quality of life: results of the Finnish arm of the prospective trial. BJU Int. 2012;109:1614–9. doi:10.1111/j.1464-410X.2011.10677.x.

    Article  PubMed  Google Scholar 

  66. Vanagas G, Mickeviciene A, Ulys A. Does quality of life of prostate cancer patients differ by stage and treatment? Scand J Public Health. 2013;41:58–64. doi:10.1177/1403494812467503.

    Article  PubMed  Google Scholar 

  67. Chun F, Becker A, Kluth L, et al. Patterns of care of patients with localized prostate cancer in Germany: a health care study with focus on active surveillance. Urol A. 2015;54:6–13.

    Article  CAS  Google Scholar 

  68. Van Den Bos W, Muller BG, Ahmed H, et al. Focal therapy in prostate cancer: international multidisciplinary consensus on trial design. Eur Urol. 2014;65:1078–83. doi:10.1016/j.eururo.2014.01.001.

    Article  PubMed  Google Scholar 

  69. Donaldson IA, Alonzi R, Barratt D, et al. Focal therapy: patients, interventions, and outcomes – a report from a consensus meeting. Eur Urol. 2015;67:771–7. doi:10.1016/j.eururo.2014.09.018.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Eggener S, Salomon G, Scardino PT, et al. Focal therapy for prostate cancer: possibilities and limitations. Eur Urol. 2010;58:57–64. doi:10.1016/j.eururo.2010.03.034.

    Article  PubMed  Google Scholar 

  71. Eifler JB, Feng Z, Lin BM, et al. An updated prostate cancer staging nomogram (Partin tables) based on cases from 2006 to 2011. BJU Int. 2013;111:22–9. doi:10.1111/j.1464-410X.2012.11324.x.

    Article  PubMed  Google Scholar 

  72. Oken MMMD, Creech RHMDB, Tormey DCMDPDC, et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol. 1982;5:649–56. doi:10.1097/00000421-198212000-00014.

    Article  CAS  PubMed  Google Scholar 

  73. Cordeiro ER, Cathelineau X, Thüroff S, et al. High-intensity focused ultrasound (HIFU) for definitive treatment of prostate cancer. BJU Int. 2012;110:1228–42. doi:10.1111/j.1464-410X.2012.11262.x.

    Article  PubMed  Google Scholar 

  74. Ahmed HU, Zacharakis E, Dudderidge T, et al. High-intensity-focused ultrasound in the treatment of primary prostate cancer: the first UK series. Br J Cancer. 2009;101:19–26. doi:10.1038/sj.bjc.6605116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ahmed HU, Freeman A, Kirkham A, et al. Focal therapy for localized prostate cancer: a phase I/II trial. J Urol. 2011;185:1246–54. doi:10.1016/j.juro.2010.11.079.

    Article  CAS  PubMed  Google Scholar 

  76. Stamey TA, Yang N, Hay AR, et al. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N Engl J Med. 1987;317:909–16. doi:10.1056/NEJM198710083171501.

    Article  CAS  PubMed  Google Scholar 

  77. Ahmed HU, Moore C, Lecornet E, Emberton M. Focal therapy in prostate cancer: determinants of success and failure. J Endourol. 2010;24:819–25. doi:10.1089/end.2009.0665.

    Article  PubMed  Google Scholar 

  78. Muller BG, van den Bos W, Brausi M, et al. Follow-up modalities in focal therapy for prostate cancer: results from a Delphi consensus project. World J Urol. 2015;33:1503–9. doi:10.1007/s00345-014-1475-2.

    Article  CAS  PubMed  Google Scholar 

  79. Puech P, Potiron E, Lemaitre L, et al. Dynamic contrast-enhanced-magnetic resonance imaging evaluation of intraprostatic prostate cancer: correlation with radical prostatectomy specimens. Urology. 2009;74:1094–9. doi:10.1016/j.urology.2009.04.102.

    Article  PubMed  Google Scholar 

  80. Villers A, Puech P, Mouton D, et al. Dynamic contrast enhanced, pelvic phased array magnetic resonance imaging of localized prostate cancer for predicting tumor volume: correlation with radical prostatectomy findings. J Urol. 2006;176:2432–7. doi:10.1016/j.juro.2006.08.007.

    Article  PubMed  Google Scholar 

  81. Ward JF, Jones JS. Focal cryotherapy for localized prostate cancer: a report from the national Cryo On-Line Database (COLD) Registry. BJU Int. 2012;109:1648–54. doi:10.1111/j.1464-410X.2011.10578.x.

    Article  PubMed  Google Scholar 

  82. Barret E, Ahallal Y, Sanchez-Salas R, et al. Morbidity of focal therapy in the treatment of localized prostate cancer. Eur Urol. 2013;63:618–22.

    Article  CAS  PubMed  Google Scholar 

  83. Tsakiris P, Thüroff S, de la Rosette J, Chaussy C. Transrectal high-intensity focused ultrasound devices: a critical appraisal of the available evidence. J Endourol. 2008;22:221–9. doi:10.1089/end.2007.9849.

    Article  PubMed  Google Scholar 

  84. Wink M, Frauscher F, Cosgrove D, et al. Contrast-enhanced ultrasound and prostate cancer; a multicentre European research coordination project. Eur Urol. 2008;54:982–93. doi:10.1016/j.eururo.2008.06.057.

    Article  PubMed  Google Scholar 

  85. Miano R, Asimakopoulos AD, Da Silva RD, et al. Focal therapy for prostate cancer: current status and future perspectives. Minerva Urol Nefrol. 2015;67:263–80.

    CAS  PubMed  Google Scholar 

  86. Trachtenberg J, Bogaards A, Weersink RA, et al. Vascular targeted photodynamic therapy with palladium-bacteriopheophorbide photosensitizer for recurrent prostate cancer following definitive radiation therapy: assessment of safety and treatment response. J Urol. 2007;178:1974–9. doi:10.1016/j.juro.2007.07.036.

    Article  CAS  PubMed  Google Scholar 

  87. Azzouzi AR, Barret E, Bennet J, et al. TOOKAD® soluble focal therapy: pooled analysis of three phase II studies assessing the minimally invasive ablation of localized prostate cancer. World J Urol. 2015:945–53. doi:10.1007/s00345-015-1505-8.

  88. Pech M, Janitzky A, Wendler JJ, et al. Irreversible electroporation of renal cell carcinoma: a first-in-man phase I clinical study. Cardiovasc Intervent Radiol. 2010;34:132–8. doi:10.1007/s00270-010-9964-1.

    Article  PubMed  Google Scholar 

  89. Martin RCG, McFarland K, Ellis S, Velanovich V. Irreversible electroporation therapy in the management of locally advanced pancreatic adenocarcinoma. J Am Coll Surg. 2012;215:361–9. doi:10.1016/j.jamcollsurg.2012.05.021.

    Article  PubMed  Google Scholar 

  90. Charpentier KP. Irreversible electroporation for the ablation of liver tumors: are we there yet? Arch Surg. 2012;147:1053–61. doi:10.1001/2013.jamasurg.100.

    Article  PubMed  Google Scholar 

  91. Rubinsky B, Onik G, Mikus P. Irreversible electroporation: a new ablation modality–clinical implications. Technol Cancer Res Treat. 2007;6:37–48.

    Article  PubMed  Google Scholar 

  92. Valerio M, Stricker PD, Ahmed HU, et al. Initial assessment of safety and clinical feasibility of irreversible electroporation in the focal treatment of prostate cancer. Prostate Cancer Prostatic Dis. 2014;17:343–7. doi:10.1038/pcan.2014.33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kasivisvanathan V, Emberton M, Ahmed HU. Focal therapy for prostate cancer: rationale and treatment opportunities. Clin Oncol (R Coll Radiol). 2013;25:461–73. doi:10.1016/j.clon. 2013.05.002.

    Article  CAS  Google Scholar 

  94. Yap T, Ahmed HU, Hindley RG, et al. The effects of focal therapy for prostate cancer on sexual function: a combined analysis of three prospective trials. Eur Urol. 2015:1–8. doi:10.1016/j.eururo.2015.10.030.

  95. Ahmed HU, Dickinson L, Charman S, et al. Focal ablation targeted to the index lesion in multifocal localised prostate cancer: a prospective development study. Eur Urol. 2015;68:927–36. doi:10.1016/j.eururo.2015.01.030.

    Article  PubMed  Google Scholar 

  96. Ahmed HU, Hindley RG, Dickinson L, et al. Focal therapy for localised unifocal and multifocal prostate cancer: a prospective development study. Lancet Oncol. 2012;13:622–32. doi:10.1016/S1470-2045(12)70121-3.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Gandaglia G, Briganti A, Salonia A, Montorsi F. Excellent erectile function recovery after focal therapy: is this enough. Eur Urol. 2015:S0302–2838.

    Google Scholar 

  98. van Velthoven R, Aoun F, Marcelis Q, et al. A prospective clinical trial of HIFU hemiablation for clinically localized prostate cancer. Prostate Cancer Prostatic Dis. 2016;19:79–83.

    Article  PubMed  Google Scholar 

  99. Roach M, Weinberg V, Nash M, et al. Defining high risk prostate cancer with risk groups and nomograms: implications for designing clinical trials. J Urol. 2006;176:S16–20. doi:10.1016/j.juro.2006.06.081.

    Article  PubMed  Google Scholar 

  100. van den Bos W, Muller BG, De La Rosette JJ. A randomized controlled trial on focal therapy for localized prostate carcinoma: hemiablation versus complete ablation with irreversible electroporation. J Endourol. 2013;27:262–4.

    PubMed  Google Scholar 

  101. van den Bos W, Muller BG, Ehdaie B, et al. What is still needed to make focal therapy an accepted segment of standard therapy? Curr Opin Urol. 2014;24:247–55.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Philipp Radtke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Radtke, J.P., Territo, A., Hohenfellner, M., Breda, A. (2017). Focal Therapy and Active Surveillance in Europe. In: Polascik, T. (eds) Imaging and Focal Therapy of Early Prostate Cancer. Current Clinical Urology. Springer, Cham. https://doi.org/10.1007/978-3-319-49911-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49911-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49910-9

  • Online ISBN: 978-3-319-49911-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics